Journal of Computation Physics and Earth Science

ISSN: 2776-2521 (online)

Volume 4, Number 1, April 2024, Page 29 - 32 https://journal.physan.org/index.php/jocpes/index

29

Detecting Extreme Weather Patterns Using AI in Bogor Region

Fitra Ananda Syahputra¹

¹Undergraduate Program in Applied of Instrumentation Meteorology, Climatology Geophysics (STMKG)

Article Info

Article history:

Received March 10, 2024 Revised March 20, 2024 Accepted March 23, 2024

Keywords:

Extreme weather, Artificial Intelligence, Bogor region, climate prediction, weather monitoring, disaster mitigation, machine learning.

ABSTRACT

Extreme weather events have become more frequent and intense globally, necessitating advanced monitoring and prediction methods. Bogor, Indonesia, known for its complex weather patterns and high rainfall intensity, faces increasing risks of flooding and landslides. This literature review explores the use of Artificial Intelligence (AI) techniques in detecting and predicting extreme weather patterns, with a focus on the Bogor region. Methods such as Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Random Forest (RF), and hybrid AI models are analyzed for their effectiveness. Key challenges, including data quality, model scalability, and computational requirements, are also discussed. The study highlights AI's potential to revolutionize weather monitoring and disaster mitigation efforts, emphasizing the need for robust and interpretable models tailored to local conditions.

This is an open access article under the <u>CC BY-SA</u> license.

Corresponden Author:

Fitra Ananda Syahputra

Undergraduate Program in Applied of Instrumentation Meteorology, Climatology Geophysics (STMKG)

Tangerang City, Banten, Indonesia Email: fitraananda512@gmail.com

1. INTRODUCTION

The frequency and severity of extreme weather events have surged globally, posing significant risks to vulnerable regions like Bogor, Indonesia [1]. As a region with one of the highest annual rainfall rates in the world, Bogor's geographical and climatic characteristics make it particularly susceptible to natural disasters such as floods, landslides, and severe storms. The increasing unpredictability of weather patterns, driven by global climate change, has amplified the need for accurate, timely, and localized weather prediction systems [2]. Traditional weather forecasting methods, while useful, often struggle to address the intricate dynamics of meteorological variables specific to Bogor's topography and climatic conditions [3]. For instance, these methods rely heavily on linear models and historical data, which may fail to capture the non-linear interactions and rapid changes characteristic of extreme weather phenomena. Moreover, the lack of high-resolution data and computational tools further limits their applicability in regions with complex weather systems like Bogor [4].

Artificial Intelligence (AI) has emerged as a transformative solution to these challenges, offering the capability to analyze vast datasets and model intricate weather patterns with remarkable precision [5]. By leveraging advanced algorithms such as Convolutional Neural Networks (CNN) for spatial analysis and Long Short-Term Memory (LSTM) networks for temporal forecasting, AI can provide actionable insights into extreme weather conditions [6]. Furthermore, hybrid approaches that integrate machine learning (ML) and deep learning (DL) techniques show promise in addressing local variability and improving predictive accuracy [7]. Recent studies have demonstrated the efficacy of AI in various aspects of environmental monitoring and disaster mitigation. For instance, CNN models have been used to analyze satellite imagery for cloud pattern recognition, while LSTM models excel in forecasting rainfall and temperature changes [8]. Random Forest and other ensemble methods have also been applied successfully in classifying flood-prone zones. These advancements highlight the potential of AI to fill the gaps left by conventional methods, offering enhanced scalability, adaptability, and accuracy [9].

This literature review examines the current state of AI applications in detecting and predicting extreme weather patterns, focusing on their relevance to the Bogor region [10]. The review aims to synthesize findings from recent studies, evaluate the effectiveness of different methodologies, and identify opportunities for future research. By understanding the strengths and limitations of AI-based approaches, this study seeks to contribute to the development of resilient and effective weather monitoring systems tailored to Bogor's unique challenges [11].

2. RESEARCH METHOD

2.1 Overview of AI Techniques in Weather Detection

Artificial Intelligence offers a range of techniques tailored to various aspects of weather detection and forecasting. Each methodology brings unique strengths while presenting certain limitations, as summarized in Table 1 below.

Method	Description	Strengths	Limitations
Convolutional	Image-based analysis for	High spatial resolution;	Computationally
Neural Networks	cloud and weather pattern	effective for satellite	intensive; requires
(CNN)	detection.	imagery.	large datasets.
Long Short-Term Memory (LSTM)	Time-series analysis for rainfall and temperature prediction.	Captures temporal dependencies effectively.	Prone to overfitting with limited data.
Random Forest (RF)	Ensemble method for classification and regression tasks.	Robust to overfitting; interpretable.	Limited scalability to high-dimensional data.
Stacked Ensemble Models	Combines multiple models for improved accuracy.	High predictive performance.	Complex implementation; high computational demand.

2.2 Applications in the Bogor Region

Rainfall prediction has been a critical focus in the Bogor region due to its susceptibility to flooding. Studies like Dewi (2020) demonstrate that LSTM models are particularly effective in capturing temporal dependencies in rainfall data. These models can process historical weather data to forecast future rainfall events with high precision [12]. However, preprocessing of noisy and incomplete datasets remains a challenge that requires sophisticated handling techniques to ensure accuracy [13]. Flood susceptibility mapping in the Bogor region has seen substantial improvement through the application of Random Forest models [14]. These ensemble methods utilize geospatial and environmental parameters to classify flood-prone areas. By integrating elevation, rainfall, and proximity to rivers, these models provide actionable insights that can guide urban planning and disaster mitigation efforts [15].

Bogor's hilly terrain makes fog prediction an essential component of weather monitoring. Advanced AI models, such as Gradient Boosting Machines (GBM) and Extreme Gradient Boosting (XGBoost), have been effectively used to predict visibility levels [16]. These models rely on data attributes like temperature, humidity, and wind speed, and their adaptation for Bogor could enhance safety protocols, particularly in transportation and aviation sectors [17]. A comparative analysis of AI techniques reveals key trade-offs between model complexity, computational requirements, and predictive accuracy.

- CNNs are best suited for spatial analysis tasks, such as satellite image classification. For instance, cloud pattern detection using CNNs has shown significant accuracy improvements over traditional methods [18].
- LSTMs excel in sequential data tasks, making them ideal for predicting dynamic weather variables like rainfall and temperature. However, these models often require large datasets and can be computationally intensive [19].
- Random Forests offer a balance of simplicity and robustness, making them particularly useful for geospatial classification tasks [20]. While they are less resource-intensive than deep learning models, their performance may decline with high-dimensional data.
- Stacked Ensemble Models integrate multiple algorithms to achieve superior accuracy. Their computational demands, however, may limit their applicability in resource-constrained settings [21]. Challenges In Applying AI

 Data Availability and Quality

One of the most critical challenges in applying AI to weather prediction is the availability of high-quality, high-resolution data. Regions like Bogor often lack dense sensor networks, resulting in gaps in weather

datasets. This limitation can affect the performance of AI models, which rely heavily on data completeness and accuracy [16].

AI models, especially deep learning approaches like CNN and LSTM, require substantial computational resources for training and inference. These demands can pose challenges in regions with limited access to high-performance computing infrastructure. The complexity of AI models often makes them difficult to interpret, particularly for non-technical stakeholders such as policymakers and disaster management officials. Enhancing model interpretability through techniques like SHAP (Shapley Additive Explanations) or LIME (Local Interpretable Model-Agnostic Explanations) can help bridge this gap [22].

3. RESULT AND DISCUSSION

3.1 Df Performance of AI Models

The reviewed literature indicates that AI models consistently outperform traditional statistical methods in weather prediction. For instance:

- CNN models achieve accuracy levels exceeding 90% for satellite-based rainfall estimation (Bianchi & Putro, 2024).
- LSTM models demonstrate R-squared values of up to 0.87 for temperature forecasting and 0.82 for pollution prediction (Dewi, 2020).
- Hybrid models combining machine learning and physical simulations provide enhanced robustness against data variability.

3.2 Comparative Analysis of AI vs. Traditional Methods

Traditional methods such as ARIMA and Maximum Likelihood Classification (MLC) lag behind AI techniques in accuracy and scalability. AI models' ability to handle non-linear relationships and high-dimensional data gives them a distinct advantage.

3.3 Case Studies in Bogor

- **Rainfall Monitoring**: AI models applied to BMKG datasets for Bogor show promising results in predicting high-intensity rainfall events with lead times of up to three hours.
- **Flood Mitigation**: Mapping efforts using RF and ensemble models have identified key flood-prone zones, aiding in disaster preparedness.

4. CONCLUSION

AI technologies offer significant advancements in detecting and managing extreme weather patterns, particularly in complex regions like Bogor. The integration of models such as LSTM and CNN with geospatial and meteorological data can revolutionize weather prediction and disaster mitigation. However, challenges like data quality, model interpretability, and resource constraints must be addressed to fully realize AI's potential. Future research should focus on developing scalable, interpretable models tailored to local contexts, leveraging hybrid approaches to enhance accuracy and robustness. Collaboration among meteorological agencies, academic institutions, and policymakers is crucial to operationalizing these advancements and building climate-resilient systems.

REFERENCE

- [1] S. Priscillia, C. Schillaci, and A. Lipani, "Flood susceptibility assessment using artificial neural networks in Indonesia," *Artif. Intell. Geosci.*, vol. 2, no. January, pp. 215–222, 2021, doi: 10.1016/j.aiig.2022.03.002.
- [2] F. Simanjuntak, I. Jamaluddin, T. H. Lin, H. A. W. Siahaan, and Y. N. Chen, "Rainfall Forecast Using Machine Learning with High Spatiotemporal Satellite Imagery Every 10 Minutes," *Remote Sens.*, vol. 14, no. 23, pp. 1–18, 2022, doi: 10.3390/rs14235950.
- [3] I. G. Prihanto *et al.*, "A technology acceptance model of satellite-based hydrometeorological hazards early warning system in Indonesia: an-extended technology acceptance model," *Cogent Bus. Manag.*, vol. 11, no. 1, p., 2024, doi: 10.1080/23311975.2024.2374880.
- [4] S. R. Putri and A. W. Wijayanto, "Learning Bayesian Network for Rainfall Prediction Modeling in Urban Area using Remote Sensing Satellite Data (Case Study: Jakarta, Indonesia)," *Proc. Int. Conf. Data Sci. Off. Stat.*, vol. 2021, no. 1, pp. 77–90, 2022, doi: 10.34123/icdsos.v2021i1.37.
- [5] R. Meenal, P. A. Michael, D. Pamela, and E. Rajasekaran, "Weather prediction using random forest machine learning model," *Indones. J. Electr. Eng. Comput. Sci.*, vol. 22, no. 2, pp. 1208–1215, 2021, doi:

- 10.11591/ijeecs.v22.i2.pp1208-1215.
- [6] A. A. Rizqi and D. Kusumaningsih, "Klasifikasi Curah Hujan di Kota Bogor Provinsi Jawa Barat dengan Menggunakan Metode Naive Bayes," J. Semin. Nas. Mhs. Fak. Teknol. Inf., no. September, pp. 542–550, 2022.
- [7] G. Gunawan, W. Andriani, and A. Aimar Akbar, "Application of machine learning for short-term climate prediction in Indonesia," *J. Mantik*, vol. 8, no. 1, pp. 828–837, 2024, doi: 10.35335/mantik.v8i1.5215.
- [8] B. Bochenek and Z. Ustrnul, "Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives," *Atmosphere (Basel)*., vol. 13, no. 2, pp. 1–16, 2022, doi: 10.3390/atmos13020180.
- [9] Aditya Gumilar, Sri Suryani Prasetiyowati, and Yuliant Sibaroni, "Performance Analysis of Hybrid Machine Learning Methods on Imbalanced Data (Rainfall Classification)," *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, vol. 6, no. 3, pp. 481–490, 2022, doi: 10.29207/resti.v6i3.4142.
- [10] H. Rofiq, K. C. Pelangi, and Y. Lasena, "Penerapan Data Mining Untuk Menentukan Potensi Hujan Harian Dengan Menggunakan Algoritma Naive Bayes," *J. Manaj. Inform. dan Sist. Inf.*, vol. 3, no. 1, pp. 8–15, 2020, [Online]. Available: http://mahasiswa.dinus.ac.id/docs/skripsi/jurnal/19417.pdf
- [11] M. Ramdhan, Y. Suharnoto, and H. Susilo Arifin, "Simulation of Environmental Carying Cappacity in Bogor City Which Rely on Rainfall As Water Supply Development of Soil and Water Assessment Tool (SWAT) in Indonesia View project Pusriskel View project," vol. 10, no. 2, p. 2018, 2018, [Online]. Available: https://www.researchgate.net/publication/326571008
- [12] Bagus Almahenzar and Arie Wahyu Wijayanto, "Analisis Intensitas Hujan Provinsi Jawa Barat Tahun 2020 Menggunakan Association Rule Apriori dan FP-Growth," J. Syst. Comput. Eng., vol. 3, no. 2, pp. 258–271, 2022.
- [13] R. Y. Mardyansyah, B. Kurniawan, S. Soekirno, D. E. Nuryanto, and H. Satria, "Artificial Intelligent For Rainfall Estimation In Tropical Region: A Survey," *IOP Conf. Ser. Earth Environ. Sci.*, vol. 1105, no. 1, 2022, doi: 10.1088/1755-1315/1105/1/012024.
- [14] N. A. Putri and A. Wibowo, "Rainfall Maps for the Suitability of Settlement Area in Bogor Raya," EnviroScienteae, vol. 19, no. 2, p. 123, 2023, doi: 10.20527/es.v19i2.15116.
- [15] M. Ramdhan, Y. Suharnoto, and H. Susilo Arifin, "Simulation of Environmental Carying Cappacity in Bogor City Which Rely on Rainfall As Water Supply Development of Soil and Water Assessment Tool (SWAT) in Indonesia View project Pusriskel View project," no. July, 2018, doi: 10.5281/zenodo.1321332.
- O. Bianchi and H. P. Putro, "Artificial Intelligence in Environmental Monitoring: Predicting and Managing Climate Change Impacts," vol. 3, no. 1, pp. 85–96, 2024.
- [17] A. R. Herdiansyah *et al.*, "Multi-temporal analysis of landslide susceptibility in the Greater Bogor Area and its relation to land use change and rainfall variation," *IOP Conf. Ser. Earth Environ. Sci.*, vol. 1313, no. 1, 2024, doi: 10.1088/1755-1315/1313/1/012025.
- [18] E. Khyber, L. Syaufina, and A. Sunkar, "Variability and time series trend analysis of rainfall and temperature in Dramaga Sub-District, Bogor, Indonesia," *IOP Conf. Ser. Earth Environ. Sci.*, vol. 771, no. 1, 2021, doi: 10.1088/1755-1315/771/1/012016.
- [19] A. Suheri, C. Kusmana, M. Y. J. Purwanto, and Y. Setiawan, "The peak runoff model based on Existing Land Use and Masterplan in Sentul City area, Bogor," *IOP Conf. Ser. Earth Environ. Sci.*, vol. 399, no. 1, 2019, doi: 10.1088/1755-1315/399/1/012039.
- [20] M. Putra, M. S. Rosid, and D. Handoko, "High-Resolution Rainfall Estimation Using Ensemble Learning Techniques and Multisensor Data Integration," Sensors, vol. 24, no. 15, 2024, doi: 10.3390/s24155030.
- [21] R. Dewi, Prawito, and H. Harsa, "Fog prediction using artificial intelligence: A case study in Wamena Airport," J. Phys. Conf. Ser., vol. 1528, no. 1, 2020, doi: 10.1088/1742-6596/1528/1/012021.
- [22] N. Liundi, A. W. Darma, R. Gunarso, and H. L. H. S. Warnars, "Improving Rice Productivity in Indonesia with Artificial Intelligence," 2019 7th Int. Conf. Cyber IT Serv. Manag. CITSM 2019, no. August, 2019, doi: 10.1109/CITSM47753.2019.8965385.