ISSN: 2776-2521 (online)

Volume 2, Number 2, October 2022, Page 1-8 https://journal.physan.org/index.php/jocpes/index

Design of a Weather Modification Technology Website Interface for Monitoring Air Quality Index in Urban Areas

Ade Wijaya¹, Dimas Khabib Mutoha²

¹State of Meteorology Climatology and Geophysics Agency, Tangerang, Banten, Indonesia ²Bhayangkara University, Bekasi, West Java, Indonesia

Article Info

Article history:

Received September 5, 2022 Revised September 10, 2022 Accepted September 11, 2022

Keywords:

Weather modification Air Quality Index Front-end Design Urban Pollution

ABSTRACT

This heartfelt paper shares the thoughtful design and development of a website interface dedicated to supporting weather modification technologies through the vigilant monitoring of the Air Quality Index (AQI) in urban areas, especially in places burdened by high pollution levels, like Jabodetabek. The front-end website gently emphasizes visualizing vital parameters of air quality, such as particulate matter (PM2.5 and PM10), carbon dioxide (CO2), and ozone (O3) levels. By lovingly integrating this data into an accessible and userfriendly interface, the platform empowers users to monitor real-time air quality conditions with ease. The website aspires to provide essential stakeholders with crucial information for making compassionate decisions regarding weather modification efforts aimed at enhancing air quality for all. This study compassionately focuses on the front-end design, ensuring simplicity and clarity in presenting the complex environmental data that often overhelms us. Future work may tenderly include back-end integration for automated data updates and broadned functionalities, bringing even more support to this noble cause.

This is an open access article under the <u>CC BY-SA</u> license.

1

Corresponden Author:

AdeWijaya State of Meteorology Climatology and Geophysics Agency Tangerang City, Banten

Email: adewsilaban@gmail.com

1. INTRODUCTION

Air pollution has become a significant concern in many urban areas around the world, particularly in regions with high population density and industrial activities. Cities such as Jakarta and its surrounding metropolitan area, collectively known as Jabodetabek, frequently experience poor air quality, which poses health risks to residents and impacts the environment [1]. In response, various technologies, including weather modification techniques, have been explored to mitigate air pollution and improve atmospheric conditions. Weather modification involves deliberate intervention in atmospheric processes, such as cloud seeding, to influence weather patterns and, in some cases, reduce pollution levels. Monitoring air quality is essential to support these efforts, as it provides real-time data that can guide decision-making and assess the effectiveness of weather modification strategies [2].

Fig 1. Weather Modification Technology Monitoring Website

The Air Quality Index (AQI), which measures pollutants like particulate matter (PM2.5 and PM10), ozone (O3), and carbon dioxide (CO2), serves as a key parameter in evaluating atmospheric conditions. Effective visualization and communication of this data are critical to ensuring that stakeholders, including government agencies, researchers, and the general public, are well-informed [3].

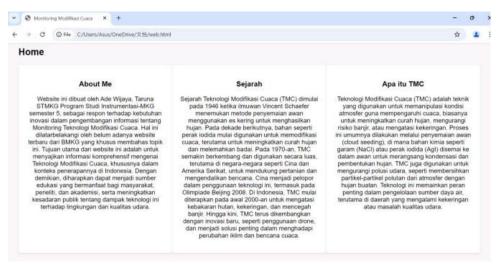


Fig 2. Website Introduction

This paper proposes the development of a website interface designed to present AQI data in a user-friendly manner, specifically for regions with high pollution levels, such as Jabodetabek. By focusing on the front-end design of the website, the study aims to create a platform that is accessible, intuitive, and informative. This website will facilitate the monitoring of air quality and serve as a tool to support weather modification initiatives. The current study focuses on the visual and interactive aspects of the website, with future potential to expand its back-end capabilities for real-time data integration and enhanced functionalities [4].

The remainder of this paper will discuss the design process, key features of the website, and the relevance of its application in the context of weather modification technologies and urban air quality management.

2. THEORETICAL BACKGROUND

Weather Modification Technology (TMC) has emerged as a crucial tool in managing atmospheric conditions to mitigate adverse weather effects, increase rainfall, or reduce pollution. The primary method employed in TMC is cloud seeding, a process where chemicals like silver iodide (AgI) or sodium chloride (NaCl) are introduced into clouds to stimulate precipitation. This technique, developed in the 1940s, has since been applied across the globe, especially in regions suffering from water shortages or severe weather conditions. In Indonesia, TMC has been implemented to address critical issues such as forest fires, drought, and flood prevention, with ongoing innovations such as drone-based cloud seeding technology further advancing its capabilities [5].

Fig 3. Air Pollutants Display

The focus of this website is on the application of TMC in urban areas, particularly its potential role in improving air quality. High levels of air pollution, particularly in densely populated regions like Jabodetabek (Jakarta, Bogor, Depok, Tangerang, Bekasi), have raised concerns about public health and environmental sustainability. The Air Quality Index (AQI), a widely recognized measure of air pollution, plays a central role in monitoring and assessing the state of the atmosphere. AQI measures the concentration of pollutants such as PM2.5, PM10, Ozone (O3), and Carbon Dioxide (CO2), which can have severe health impacts, particularly for vulnerable populations. These pollutants are closely monitored in metropolitan areas, where industrial activities, vehicular emissions, and urban sprawl contribute to the degradation of air quality [6].

In the context of urban pollution management, cloud seeding could serve as a supplementary tool for cleaning the atmosphere. By inducing rain, the particulate matter in the air, including harmful pollutants, can be washed away, temporarily improving air quality. This strategy, while still under research, has the potential to provide relief in heavily polluted areas, such as those documented in the AQI maps for Jakarta, Tangerang, Bekasi, and Bogor, featured on the website [7].

71	70				
	70 7	0 6	9 6	8 68	67
ے دے				D al	-
33° 3	3° 3	3° 3	2° 3	1° 30	° 29°
	> >	- 3	> >	- >	-
			8 1 n/h km		
4"	6 " 8	, n		JII 6"	W. 9W.
63% 5	9% 57	7% 57	7% 58	1% 599	% 61%

Fig 4. Air Quality Display

In addition to providing data on air quality, the website offers an overview of real-time conditions in these areas, emphasizing the relationship between TMC and the ongoing efforts to manage urban pollution. By utilizing Internet of Things (IoT)-based sensors and integrating data visualization tools, the site helps communicate complex AQI data in an accessible manner, which is critical for increasing public awareness and enabling informed decision-making.

The theoretical foundation for this research lies in the intersection of weather modification and air quality management, supported by the application of modern technologies in environmental monitoring. As the effects of climate change and urbanization intensify, the role of TMC in maintaining environmental balance, particularly in highly polluted areas, becomes increasingly important. This research aims to explore how TMC can be effectively integrated with real-time monitoring platforms to improve air quality and promote sustainable environmental practices [8].

3. LITERATURE REVIEW

Coral Weather modification technology, particularly cloud seeding, has been a topic of research since the mid-20th century. Schaefer and Vonnegut (1946) are often credited with pioneering cloud seeding

techniques, where chemicals such as silver iodide and dry ice are introduced into clouds to stimulate precipitation. Over the decades, numerous studies have validated cloud seeding's efficacy in increasing rainfall, with notable applications in agriculture and water resource management. In research conducted by Bruintjes (1999), cloud seeding was highlighted as a viable method for enhancing water supplies in arid regions, with the potential to improve irrigation and water availability for farming communities [9].

In recent years, the scope of weather modification has expanded to include its role in air quality management. Several studies have explored the potential of cloud seeding to reduce atmospheric pollution by washing away particulate matter (PM2.5, PM10) through induced rainfall. Rosenfeld et al. (2000), in a study focused on cloud microphysics, demonstrated that artificially induced rainfall could assist in removing pollutants from the atmosphere. In urban settings, this approach has been considered in high-density areas where air quality regularly exceeds hazardous levels, such as Beijing and Jakarta. Li et al. (2011) conducted experiments on cloud seeding in China to clear smog and reduce particulate pollution, indicating moderate success in reducing pollution concentrations post-seeding [10].

The Air Quality Index (AQI) is central to monitoring air pollution levels and assessing health risks. As noted by Thompson et al. (2014), AQI provides a standardized method to convey air quality levels to the public, where pollutants such as ground-level ozone, particulate matter, sulfur dioxide, and nitrogen oxides are measured. According to WHO (2018), exposure to high levels of PM2.5 and PM10 has been linked to respiratory and cardiovascular diseases, and managing these pollutants is critical to public health in urban areas [11].

Figure 5. HTML Code Display

In Indonesia, the implementation of cloud seeding began in the early 2000s as a response to severe forest fires and seasonal droughts. Studies conducted by Yulianti and Hayasaka (2013) on the effectiveness of TMC in reducing the impacts of forest fires in Sumatra and Kalimantan found that cloud seeding operations during fire seasons helped reduce haze and improve air quality. These operations, however, require precise conditions to be successful, such as the presence of clouds suitable for seeding, and are influenced by local meteorological factors [12].

The use of Internet of Things (IoT)-based sensors for environmental monitoring has transformed how real-time data on air quality is collected and analyzed. Tseng et al. (2018) describe the deployment of low-cost IoT sensors in urban areas as a significant advancement in tracking pollution. The integration of these sensors into websites and mobile platforms has enhanced public accessibility to air quality data. In Jakarta, initiatives like IQAir (2020) have developed realtime air monitoring systems, which provide up-to-date AQI data and pollution forecasts, improving the public's ability to respond to pollution hazards [13].

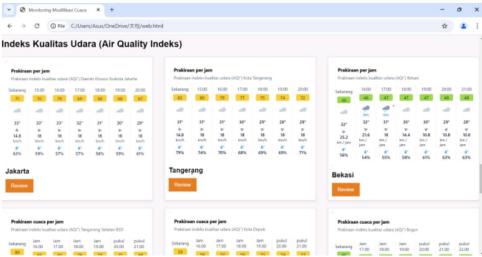


Figure 6. Air Quality Index

In terms of web-based applications, user experience (UX) design plays a critical role in making environmental data accessible. Norman (2013) emphasizes the importance of intuitive design in presenting complex information to users who may not have technical backgrounds. Visual aids, such as graphs, color-coded scales, and interactive maps, are essential for communicating air quality data effectively. Websites designed for environmental monitoring must prioritize responsiveness and user-friendly interfaces, ensuring that information is easily navigable and comprehensible across devices, as highlighted in Cooper et al. (2014) [14].

This body of literature provides the foundation for developing a website that integrates weather modification technology with air quality monitoring. By leveraging realtime AQI data and cloud seeding methods, this research aims to create a platform that supports public awareness and policy initiatives in highly polluted areas like Jabodetabek. While cloud seeding presents promising potential, its limitations, including dependency on meteorological conditions and the temporary nature of pollution mitigation, necessitate further investigation [15].

4. DISCUSSION

The implementation of weather modification technology, particularly through cloud seeding, presents both promising opportunities and notable challenges in addressing environmental concerns, such as water scarcity and air quality degradation. This study focuses on the potential for using cloud seeding to manage air pollution in heavily populated urban areas, specifically within the Jabodetabek region, where air quality often exceeds safe levels. The discussion in this chapter explores the effectiveness of cloud seeding as a solution for improving air quality, the integration of real-time data through a web-based platform, and the implications for public health and policy [16].

A. The Effectiveness of Cloud Seeding for Air Quality Improvement

Cloud seeding has traditionally been used to enhance precipitation, particularly in agricultural regions facing drought conditions. However, its application in air quality management has gained attention in recent years, especially in cities grappling with high levels of particulate matter (PM2.5, PM10) due to industrial activities, vehicular emissions, and other urban pollutants. Studies conducted in China and other countries suggest that cloud seeding can help temporarily reduce airborne pollutants by inducing rain, which effectively washes these particulates out of the atmosphere [17].

In the context of Jabodetabek, cloud seeding could serve as a short-term solution to address spikes in air pollution during critical periods, such as the dry season or when haze from forest fires blankets the region. The data from air quality monitoring systems in Jakarta, Bogor, Depok, Tangerang, and Bekasi indicate that these areas frequently experience unhealthy AQI levels. Induced rainfall could help mitigate these conditions by clearing the air of pollutants, though the effectiveness is dependent on favorable meteorological conditions, such as the availability of suitable cloud formations [18].

However, cloud seeding as a method for improving air quality is not without limitations. First, the process requires precise weather conditions to be effective, and there is no guarantee of immediate or long-lasting results. Moreover, the scope of its impact is limited; while cloud seeding can help temporarily reduce pollutants, it does not address the underlying sources of pollution, such as emissions from traffic, factories,

and power plants. Therefore, cloud seeding should be seen as a supplementary measure to broader efforts aimed at reducing emissions and improving air quality sustainably [19].

B. Integration of Real-Time Monitoring and Web-Based Platform

One of the core components of this project is the development of a real-time monitoring website that integrates weather modification data with air quality indicators. The website offers users access to real-time AQI data for different regions within Jabodetabek, allowing for a clearer understanding of pollution patterns. By presenting air quality information through an accessible and user-friendly interface, the website empowers the public, researchers, and policymakers to make informed decisions regarding weather modification interventions and other air quality management strategies[20].

The integration of IoT-based sensors and real-time data visualization has greatly improved the way air quality is monitored and reported. These technologies allow for continuous tracking of air quality across multiple locations, which is critical for identifying pollution trends and hotspots. The website's use of color-coded AQI scales, interactive maps, and region-specific data ensures that users can quickly grasp the severity of air pollution in their area. This is particularly important for vulnerable populations, such as those with respiratory conditions, who need timely information to protect their health.

In the context of TMC, the website also highlights the potential of cloud seeding to improve air quality in regions experiencing high pollution levels. By displaying real-time weather data alongside air quality metrics, the website provides a comprehensive platform for assessing the viability of cloud seeding operations. For example, in areas where cloud cover and humidity levels are favorable, cloud seeding can be proposed as a short-term measure to alleviate air pollution, especially during critical pollution events.

C. Public Awareness and Policy Implications

One of the key objectives of this project is to raise public awareness about the role of TMC and air quality monitoring in environmental management. By providing a centralized platform for real-time air quality data and information about cloud seeding, the website helps bridge the gap between scientific knowledge and public understanding. Increased awareness of air quality issues is crucial for encouraging behavioral changes, such as reducing car usage on highpollution days or supporting policies aimed at reducing emissions.

Moreover, the project emphasizes the need for stronger policies and regulatory frameworks to complement technological interventions like cloud seeding. While weather modification can offer short-term relief, long-term solutions must focus on reducing emissions at their source. Governments at the national and local levels should prioritize policies that address the root causes of air pollution, such as stricter emission standards for vehicles and industries, the promotion of clean energy, and the expansion of public transportation networks.

Cloud seeding operations should be integrated into broader environmental management plans, particularly in regions like Jabodetabek where pollution poses significant health risks. The data provided by real-time monitoring systems can help policymakers assess the effectiveness of these interventions and determine when and where they should be applied. For example, during periods of extreme air pollution, cloud seeding could be deployed as part of an emergency response plan to reduce pollution levels quickly. However, policymakers must also consider the costs and logistical challenges associated with cloud seeding, including the availability of necessary resources, such as aircraft and chemicals, and the need for coordination across multiple government agencies [1].

D. Limitations and Future Research

While the project presents a promising approach to integrating TMC with air quality monitoring, several limitations must be addressed. First, the effectiveness of cloud seeding in reducing air pollution is still a subject of ongoing research, and more empirical studies are needed to confirm its long-term impact on air quality in urban areas. Additionally, the website's reliance on IoT-based sensors for real-time data means that the accuracy of air quality measurements is contingent upon the quality and maintenance of these sensors.

Future research should focus on developing more sophisticated models for predicting the outcomes of cloud seeding operations, taking into account factors such as cloud microphysics, local meteorological conditions, and pollutant composition. Additionally, expanding the website to include predictive analytics and forecasting tools could further enhance its utility for decision-makers, allowing for more proactive measures to mitigate air pollution [10].

5. CONCLUSION

The development and integration of weather modification technology (TMC) with real-time air quality monitoring, as demonstrated in this project, presents a novel approach to addressing environmental issues such as air pollution, particularly in densely populated urban regions like Jabodetabek. This study explored the effectiveness of cloud seeding as a supplementary method for improving air quality and reducing particulate matter in the atmosphere, alongside the creation of a web-based platform that delivers real-time air quality data to the public [1].

Several key conclusions can be drawn from this research:

- Cloud Seeding as a Short-Term Solution: Cloud seeding has potential as a short-term solution to
 mitigate the effects of air pollution in urban areas. While it can temporarily reduce levels of
 pollutants, its effectiveness is heavily dependent on favorable meteorological conditions, such as
 cloud availability and humidity. This technology should therefore be viewed as part of a broader
 strategy for environmental management, rather than a standalone solution.
- 2. Real-Time Monitoring for Informed DecisionMaking: The integration of real-time air quality monitoring into a user-friendly website platform has proven to be an effective way to increase public awareness and provide critical information to researchers, policymakers, and the general public. By offering continuous updates on air quality conditions, the platform helps users make informed decisions regarding cloud seeding interventions and health precautions during high-pollution events.
- 3. Public Awareness and Policy Implications: The project's emphasis on public accessibility to air quality data serves as a foundation for raising awareness about environmental issues and promoting behavioral change. It also underscores the importance of strong policy frameworks that target the root causes of air pollution, such as emission reduction, cleaner transportation, and sustainable energy practices.
- 4. Limitations and the Need for Further Research: While cloud seeding can temporarily alleviate air pollution, its long-term impact remains an area requiring further research. The accuracy of real-time air quality data and the scalability of cloud seeding operations also pose challenges. Future studies should focus on refining predictive models for weather modification, improving sensor accuracy, and exploring additional applications of TMC in urban environmental management.

In conclusion, the combination of weather modification and real-time monitoring offers a promising avenue for improving air quality in urban areas. However, this approach must be supported by comprehensive environmental policies and ongoing research to ensure its effectiveness and sustainability. Ultimately, the successful implementation of TMC and real-time monitoring systems will contribute to healthier environments and better quality of life for residents in pollution-prone areas [12].

REFERENCE

- [1] J. Fenger, "Urban air quality," 1999.
- [2] Z. Zhang, Y. Zeng, and K. Yan, "A hybrid deep learning technology for PM2.5 air quality forecasting," Environmental Science and Pollution Research, vol. 28, no. 29, pp. 39409–39422, Aug. 2021, doi: 10.1007/s11356-021-12657-8.
- [3] Y. Udjaja, "EKSPANPIXEL BLADSY STRANICA: Performance Efficiency Improvement of Making Front-End Website Using Computer Aided Software Engineering Tool," in Procedia Computer Science, Elsevier B.V., 2018, pp. 292–301. doi: 10.1016/j.procs.2018.08.177.
- [4] J. Neyman, "A statistician's view of weather modification technology (A Review) (drought/national policy/randomized experiments/operational cloud seeding)," 1977. [Online]. Available: https://www.pnas.org
- [5] A. Sandhyavitri et al., "Reduction of Carbon Emissions from Tropical Peat Land Fire Disasters Using Weather Modification Technology," Environment and Ecology Research, vol. 11, no. 5, pp. 834–848, Sep. 2023, doi: 10.13189/eer.2023.110512.
- [6] A. Sandhyavitri, I. Rahmi, H. Widodo, and R. R. Husaini, "Evaluation the Effectiveness Implementation of the Weather Modification Technology for Mitigating Peatland Fires," in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-6596/1655/1/012153.
- [7] R. M. Rasmussen et al., "Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling," J Appl Meteorol Climatol, vol. 57, no. 11, pp. 2639–2660, Nov. 2018, doi: 10.1175/JAMC-D17-0335.1.
- [8] X. Guo et al., "Advances in cloud physics and weather modification in China," Adv Atmos Sci, vol. 32, no. 2, pp. 230–249, Feb. 2015, doi: 10.1007/s00376-014-0006-9.

- [9] S. Sutikno, I. R. Amalia, A. Sandhyavitri, A. Syahza, H. Widodo, and T. H. Seto, "Application of weather modification technology for peatlands fires mitigation in Riau, Indonesia," in AIP Conference Proceedings, American Institute of Physics Inc., May 2020. doi: 10.1063/5.0002137.
- [10] K. Ukhurebor, I. Abiodun, S. Azi, I. Otete, and L. Obogai, "A Cost Effective Weather Monitoring Device," Archives of Current Research International, vol. 7, no. 4, pp. 1–9, Jan. 2017, doi: 10.9734/acri/2017/32885.
- [11] A. Sandhyavitri, M. A. Perdana, S. Sutikno, and F. H. Widodo, "The roles of weather modification technology in mitigation of the peat fires during a period of dry season in Bengkalis, Indonesia," in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Mar. 2018. doi: 10.1088/1757-899X/309/1/012016.
- [12] S. A. Changnon and W. H. Lambright, "'KEVIEWED' THE RISE AND FALL OF FEDERAL WEATHER MODIFICATION POLICY."
- [13] X. Guo and G. Zheng, "Advances in weather modification from 1997 to 2007 in China," in Advances in Atmospheric Sciences, Mar. 2009, pp. 240–252. doi: 10.1007/s00376-009-0240-8.
- [14] S. S. Chien, D. L. Hong, and P. H. Lin, "Ideological and volume politics behind cloud water resource governance

 Weather modification in China," Geoforum, vol. 85, pp. 225–233, Oct. 2017, doi: 10.1016/j.geoforum.2017.08.003.
- [15] D. Axisa and T. P. DeFelice, "Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems," Sep. 01, 2016, Elsevier Ltd. doi: 10.1016/j.atmosres.2016.03.005.
- [16] J. M. Herndon, "Adverse agricultural consequences of weather modification," Agrivita, vol. 38, no. 3, pp. 213–221, Oct. 2016, doi: 10.17503/agrivita.v38i3.866.
- [17] T. H. Seto, A. E. Sakya, M. B. R. Prayoga, and F. Sunarto, "Role of Weather Modification Technology in climate change adaptation: Indonesian case," Regional Problems, vol. 21, no. 3 (1), pp. 54–57, 2018, doi: 10.31433/1605-220x-2018-21-3(1)-54-57.
- [18] S. Bahri, H. Aditya, F. Heru Widodo, and T. Handoko Seto, "Weather Modification Activities in Indonesia."
- [19] K. C. Harper, "Climate control: United States weather modification in the cold war and beyond," Mar. 2008. doi: 10.1016/j.endeavour.2008.01.006.
- [20] D. Axisa and T. P. DeFelice, "Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems," Sep. 01, 2016, Elsevier Ltd. doi: 10.1016/j.atmosres.2016.03.005.