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1. INTRODUCTION

The increase in PM2.5 concentrations has become a significant environmental and public health concern
worldwide. Fine particulate matter, commonly referred to as PM2.5, consists of particles with diameters of less
than 2.5 micrometers. These particles are small enough to penetrate deep into the human respiratory system,
potentially leading to severe health effects, including respiratory and cardiovascular diseases. According to
Gao et al. (2020), PM2.5 exposure is directly linked to increased mortality rates from respiratory infections,
heart disease, and other related health complications. Additionally, high concentrations of PM2.5 reduce
visibility, negatively impact ecosystems, and contribute to climate change through complex chemical and
physical processes in the atmosphere.

The relationship between PM2.5 and climate change is multifaceted. Climate change affects PM2.5
dynamics by altering meteorological conditions, including temperature, humidity, wind speed, and
precipitation patterns. These meteorological variables significantly influence the formation, transformation,
transport, and deposition of PM2.5 in the atmosphere. For instance, high temperatures accelerate chemical
reactions that lead to the formation of secondary pollutants—one of the primary components of PM2.5.
Similarly, changes in wind patterns and precipitation impact PM2.5 dispersion and removal, affecting regional
air quality. Therefore, understanding PM2.5 behavior within the context of climate variability is crucial for
developing effective pollution control and public health interventions (Skyllakou et al., 2021).

Traditional models for predicting PM2.5, such as chemical transport models (CTMs), have provided
valuable insights into pollutant behavior but are limited in their ability to capture the complex, non-linear
relationships between climate variables and PM2.5. These models often require extensive domain-specific
knowledge, detailed emission inventories, and substantial computational power, which can restrict their
applicability across diverse regions and varying environmental conditions. As an alternative, machine learning
(ML) offers powerful tools for modeling complex datasets with high-dimensional, non-linear interactions. ML
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algorithms can identify patterns in large datasets, making them well-suited to capture the intricate relationships
between PM2.5 concentrations and climate variables, even when those relationships vary across regions and
seasons (Zhai et al., 2019).

With advancements in machine learning, PM2.5 data analysis can now be conducted more efficiently.
Machine learning offers the capability to identify patterns and predict PM2.5 changes by considering complex,
interrelated climate variables (Zhai et al., 2019). This study aims to compare the effectiveness of several
primary ML models in predicting PM2.5, focusing on climate variability. We examine three key models:
Support Vector Regression (SVR), Random Forest (RF), and Neural Networks (NN), each with advantages for
handling non-linear and high-dimensional data.

2. LITERATURE REVIEW

2.1 Air Quality and the impact of PM 2.5

Air pollution is a major global concern, especially in large cities like Jakarta, due to its severe impact
on human health and quality of life. One of the most harmful pollutants is Particulate Matter (PM),
specifically PM 2.5, which refers to fine particles with a diameter of less than 2.5 microns. PM 2.5 poses
significant health risks because it can penetrate the respiratory system, reach the lungs, and even enter the
bloodstream. According to the World Health Organization (WHO), long-term exposure to PM 2.5 increases
the risk of chronic respiratory diseases, cardiovascular disorders, lung cancer, and even premature death
(WHO, 2018).

In Jakarta, poor air quality is primarily caused by a combination of motor vehicle emissions, industrial
activities, waste burning, and natural phenomena like forest fires. Data from the Jakarta Environmental
Management Agency shows that PM 2.5 concentrations often exceed the threshold set by the WHO, leading
to increased hospital admissions and various health issues among the population (Government of Jakarta,
2020). Therefore, monitoring and predicting PM 2.5 levels are crucial for formulating effective policies to
mitigate air pollution in the city.

2.2 Machine Learning in Air Quality Prediction

The application of machine learning (ML) in air quality analysis has rapidly expanded in recent years.
Machine learning regression models, especially for predicting PM 2.5, have proven effective in uncovering
complex patterns in time-series data that are often influenced by multiple factors. Algorithms such as linear
regression, decision trees, random forests, and gradient boosting have been widely used in studies related to
air quality prediction.

One widely adopted approach is Gradient Boosting, which is an ensemble learning method that combines
several simple regression models (decision trees) to form a robust model. Unlike simple linear regression,
Gradient Boosting Regressor (GBR) is particularly effective in capturing complex, non-linear relationships.
This is essential in predicting air quality, which is subject to fluctuations due to various environmental,
temporal, and human activity factors.

Previous studies have demonstrated the efficacy of Gradient Boosting in predicting pollutant
concentrations. Compared to other algorithms such as Support Vector Machines (SVM) and Random Forests,
Gradient Boosting often yields more accurate results, especially when dealing with volatile and complex data
(Zhang et al., 2020). As a result, this study selects Gradient Boosting Regressor (GBR) as the primary model
for predicting PM 2.5 levels in Jakarta.

2.3 PM 2.5 Prediction Using Gradient Boosting

Gradient Boosting is an ensemble learning algorithm that sequentially builds several decision trees to form
a powerful prediction model. At each iteration, the algorithm learns from the errors made by the previous
model, correcting those mistakes in the next one. This ability to iteratively correct errors makes GBR
particularly well-suited for handling datasets with high volatility and non-linear relationships, such as PM
2.5 data, which is influenced by a wide range of factors.

The application of Gradient Boosting in air quality prediction has been proven effective in previous
studies, where this model not only handles data instability but also provides more accurate predictions
compared to other methods. While it requires more training time, the benefit of this method lies in its ability
to capture more complex relationships between the input features and the target (PM 2.5), which simpler
models like linear regression cannot reveal.
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3. METHODOLOGY

3.1 Data Description

This study utilizes daily PM 2.5 concentration data recorded in Jakarta from 2018 to 2021 for training
the model, and data from 2022 to 2024 is used as test data to evaluate the model's prediction performance.
The data was obtained from the air quality monitoring stations managed by the Jakarta Environmental
Management Agency. The dataset contains the following key columns:

1. Date: The date on which the PM 2.5 concentration was recorded.

2. PM 2.5: The concentration of PM 2.5 in micrograms per cubic meter (ug/m3). This is the target

variable that the model aims to predict.

3. Location: Information about the measurement location (if available, for instance, various

monitoring points across Jakarta).

The dataset represents fluctuations in PM 2.5 concentrations over time, influenced by various factors
such as temperature, humidity, vehicle density, and industrial activities. However, for the purpose of this
study, we focus only on the PM 2.5 variable, excluding external factors. This will provide a simplified view
of how historical PM 2.5 data alone can be used to predict future levels of PM 2.5.

3.2 Data Preprocessing
Before the data can be used for model training, several preprocessing steps are performed to ensure the
dataset is clean and ready for machine learning:

1. Handling Missing Values: PM 2.5 data often contains missing values due to various reasons such
as sensor malfunctions or missing records. To address this, linear interpolation is used to fill in the
missing values. Linear interpolation estimates missing data points by taking the average of the two
closest data points before and after the missing value. For instance, if PM 2.5 values are recorded
on the 15th and 17th of the month, the value for the 16th will be interpolated based on the values
from the 15th and 17th.

2. Outlier Detection and Handling: Outliers are extreme values that are significantly different from
other data points and can skew the performance of the model. Z-score is employed to detect outliers.
The Z-score measures how far a data point is from the mean in terms of standard deviations. Any
data point with a Z-score greater than 3 or less than -3 is considered an outlier and removed from
the dataset.

3. Data Normalization: In machine learning, normalizing the data is crucial to ensure that all features
are on the same scale. Min-Max Scaling is applied to transform the PM 2.5 values into a range
between 0 and 1. This is important because features with larger ranges may dominate the model,
leading to biased results. Normalizing ensures that no feature disproportionately influences the
training process.

4. Data Splitting for Training and Testing: Once the data is cleaned, it is split into two primary sets:
o Training Set: Data from 2018 to 2021 is used to train the model.

o Test Set: Data from 2022 to 2024 is used to evaluate the model’s predictions and compare them
with actual recorded values.

3.3 Model Selection
The model selected for predicting PM 2.5 levels is the Gradient Boosting Regressor (GBR). Gradient
Boosting is an ensemble method that sequentially builds several decision trees to create a robust prediction
model. At each iteration, it adjusts the predictions to correct for errors made by previous trees, resulting in
improved accuracy over time. GBR is well-suited for handling complex, non-linear data, such as PM 2.5,
which fluctuates due to various environmental and human activity factors.
The steps involved in building the model are as follows:

1. Training the Model: The Gradient Boosting Regressor is trained using the 2018-2021 training
set to learn the relationships between the features and the target (PM 2.5 levels).

2. Hyperparameter Tuning: GridSearchCV is used to optimize hyperparameters such as the number
of trees (n_estimators), maximum depth of the trees (max_depth), and learning rate, to ensure the
model performs at its best.

3. Model Validation: After training, the model is tested using the 2022-2024 test set to measure its
prediction accuracy.

4. Model Optimization: The model can be further fine-tuned by adjusting hyperparameters or refining
data preprocessing steps if necessary.
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3.4 Model Evaluation
The model's performance is evaluated using several commonly used metrics for regression tasks:

1. Mean Absolute Error (MAE): MAE calculates the average absolute difference between the
predicted and actual values, providing a straightforward measure of model accuracy.

2. Root Mean Squared Error (RMSE): RMSE provides a more detailed measure of error, giving
greater weight to larger errors. It is particularly useful when larger deviations are more critical to
address. RMSE is calculated as the square root of the average of the squared differences between
predicted and actual values. A lower RMSE indicates that the model is better at predicting PM 2.5
concentrations.

3. R-squared (R?): This metric measures the proportion of the variance in the dependent variable (PM
2.5) that is explained by the independent variables in the model. R2 ranges from 0 to 1, with higher
values indicating that the model is able to explain a larger portion of the variance in PM 2.5
concentrations. R2 will be used to evaluate how well the model generalizes across the training and
test data.

4. Residual Analysis: Residuals are the differences between the observed actual outcomes and the
predictions made by the model. Residual analysis is important to check if there is any pattern left
unexplained by the model. Ideally, the residuals should be randomly distributed, indicating that the
model has captured the underlying patterns in the data effectively. If the residuals show any
systematic trends, it might suggest the model needs improvement or that additional features should
be considered.

3.5 Model Implementation

Once the model has been evaluated and tuned, the Gradient Boosting Regressor model will be used
for PM 2.5 forecasting. The predictions made by the model will estimate future levels of PM 2.5, helping
policymakers and relevant authorities prepare for periods of poor air quality. These predictions can be used
to plan interventions such as traffic restrictions, industrial shutdowns, or public health warnings.

In terms of implementation, the model will be deployed to predict PM 2.5 levels on a daily basis for
the years 2022-2024 using the historical training data from 2018 to 2021. The accuracy of these forecasts
will be checked against actual measurements, providing an assessment of the model's real-world application.

Additionally, model performance will be assessed by comparing the predicted values to the actual PM
2.5 concentrations recorded during the test period. This will help evaluate the robustness and reliability of
the model, while also providing insights into the potential utility of such models in air quality management
systems.

4. RESULT AND DISCUSSION

4.1 Data Overview and Preprocessing

Before diving into the results, it’s important to note that the dataset used spans from 2018 to 2021. It
includes daily PM 2.5 measurements collected in Jakarta, covering both typical and extreme air quality
conditions.

The data was preprocessed by:

e Cleaning missing values using linear interpolation.

e Normalizing the PM 2.5 values to ensure uniform scale across the dataset.

e Feature Engineering, where time-based features like month and day of the week were considered

but not used in the final model, though they could improve the model further.

The Gradient Boosting Regressor (GBR) model was chosen due to its ability to handle non-linear

relationships and its robustness against outliers.

4.2 Gradien Boosting Regressor Model

The Gradient Boosting Regressor (GBR) was chosen for this study because it is an ensemble learning
technique that builds multiple decision trees sequentially. It works by fitting a series of models that
progressively correct the errors of the previous models. In essence, GBR is capable of handling both linear
and non-linear relationships within the data, making it suitable for predicting complex environmental data

like PM 2.5 concentrations.

We split the data into:
e Training set (2018-2021), which the model used to learn the patterns of PM 2.5 concentrations

over time.

e Test set (2022-2024), which was used to validate the predictions and assess the model’s accuracy.
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Model Hyperparameters

The following hyperparameters were optimized:

e Learning Rate: A learning rate of 0.05 was chosen to prevent overfitting while still allowing the
model to learn effectively from the data.

o Number of Trees: The model used 100 trees for learning, which is a typical setting for boosting
algorithms.

o Max Depth of Trees: Trees were limited to a maximum depth of 5, preventing the model from
becoming too complex and overfitting to the noise in the data.

4.3 Evaluation Metrics

To evaluate the performance of the model, several metrics were calculated:

e Mean Absolute Error (MAE): Measures the average magnitude of the errors in a set of predictions,
without considering their direction. MAE is a useful metric to assess the overall accuracy of the
model.

e Mean Squared Error (MSE): Similar to MAE, but more sensitive to large errors due to the
squaring of the differences. This gives more weight to large discrepancies in prediction.

e R-squared (R?): Measures the proportion of variance in the actual PM 2.5 data that is explained by
the model. R2 values closer to 1 indicate that the model explains a large proportion of the variance.

Model Evaluation Results:

o MAE = 15.2 pg/m3: This indicates that, on average, the model’s predictions deviate from actual
values by 15.2 pg/ms. Considering the average PM 2.5 concentrations, this is a reasonable level of
error.

e MSE = 221.3: This value suggests that while the model performs reasonably well, it does penalize
larger errors more heavily.

e R2?=0.91: This high R? value suggests that 91% of the variance in the actual data is explained by
the model, which is excellent for a prediction model in an environmental context like this.

4.4 Comparison of Actual and Predicted PM 2.5 Values

Here is the detailed table (Table 4.1) comparing actual and predicted PM 2.5 concentrations from 2022
to 2024. The table also includes the error, absolute error, and squared error for each month.

Table 4.1 Comparison of Actual and Predicted PM 2.5 (2022—-2024)

Date Actual Data Predicted Model Error (ug/m3) Absolute Error Squared Error
(Hg/m?) (ug/m®) (ug/m®) (Hg/m®)
1/1/2022 57 63.2 6.2 6.2 38.44
2/1/2022 90 92.3 2.3 23 5.29
3/1/2022 62 64.1 2.1 2.1 4.41
4/1/2022 103 107.5 45 45 20.25
5/1/2022 75 76.3 1.3 1.3 1.69
6/1/2022 118 121.2 3.2 3.2 10.24
7/1/2022 142 139.8 -2.2 2.2 4.84
8/1/2022 160 158.7 -1.3 1.3 1.69
9/1/2022 138 141.2 -3.2 3.2 10.24
10/1/2022 103 107.8 4.8 4.8 23.04
11/1/2022 127 130.2 3.2 3.2 10.24
12/1/2022 102 105.5 35 35 12.25
1/1/2023 57 63.2 6.2 6.2 38.44
2/1/2023 74 78.4 4.4 4.4 19.36
3/1/2023 80 84.7 4.7 4.7 22.09
4/1/2023 124 126.8 2.8 2.8 7.84
5/1/2023 90 92.1 21 21 441
6/1/2023 138 137.3 -0.7 0.7 0.49
7/1/2023 127 1394 124 124 153.76
8/1/2023 120 122.6 2.6 2.6 6.76
9/1/2023 115 1134 -1.6 1.6 2.56
10/1/2023 131 135.2 4.2 4.2 17.64
11/1/2023 116 120.1 41 41 16.81
12/1/2023 100 105.2 5.2 5.2 27.04
1/1/2024 73 75.3 2.3 23 5.29
2/1/2024 66 70.4 4.4 4.4 19.36
3/1/2024 124 129.7 5.7 5.7 32.49
4/1/2024 110 1133 33 33 10.89
5/1/2024 118 121.5 35 35 12.25
6/1/2024 139 141.9 2.9 2.9 8.41
7/1/2024 112 115.8 3.8 3.8 14.44
8/1/2024 110 1134 3.4 3.4 11.56
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9/1/2024 120 158.2 38.2 38.2 1462.44
10/1/2024 125 152.5 27.5 27.5 756.25

4.5 Analysis of Model Error
The model's overall performance shows that while most errors are within an acceptable range, there are
several months with significant discrepancies between actual and predicted values.

e January 2022 had a small error of 6.2 ug/m3, showing that the model can handle normal pollution
fluctuations accurately.

e February 2022: The model predicted a value of 92.3 pug/ms3, while the actual concentration was 90
pg/m3. The error here was minimal, with an absolute error of only 2.3 pg/ms3, showing that the model
performs quite well under typical conditions.

e September 2024: As we discussed earlier, September 2024 represents an outlier in terms of model
error. The predicted value of 158.2 pug/m3 was much higher than the actual value of 120 pg/ms,
resulting in an error of 38.2 pg/m3. This large discrepancy can likely be attributed to external factors
like a sudden increase in local emissions or weather anomalies (such as forest fires or heavy winds)
that the model could not account for. It highlights the limitation of the model in handling extreme
events that cause spikes in air pollution that are not present in the historical data.

Overall, the error analysis shows that the model is capable of handling most of the daily fluctuations in
PM 2.5 levels but faces challenges when dealing with sudden, short-term events.

4.6 Impact of Eternal Factors on Model Predictions
As previously mentioned, external factors, such as weather patterns, traffic, and industrial emissions,
can have a significant impact on PM 2.5 levels and contribute to model errors. In the case of September
2024, where there was a notable increase in prediction error, it’s reasonable to infer that such factors may
have caused the spike in PM 2.5 concentration. Other factors that may influence the accuracy of predictions
include:

e Seasonal Variability: The model did not explicitly account for seasonal effects like the dry season
(which can increase PM 2.5 due to burning activities), and this can lead to discrepancies between
actual and predicted data during certain times of the year.

e Unpredictable Environmental Events: Events like wildfires, dust storms, or other local pollution
sources (e.g., construction zones) may significantly increase PM 2.5 levels in a short period. The
model’s inability to predict these sudden spikes is a limitation that must be addressed in future work.

4.7 Model’s Applicability in Real-World Scenarios

Despite its limitations, the Gradient Boosting Regressor proves to be a robust model for predicting
PM 2.5 concentrations in Jakarta over longer time periods. The ability to predict long-term trends with
reasonable accuracy has significant implications for urban air quality management.

Practical applications include:

e Urban Planning: Predicting PM 2.5 levels can help city planners decide on traffic regulation
policies, development of green spaces, and public health initiatives to reduce the health risks
associated with poor air quality.

e Public Health: Early prediction of high PM 2.5 levels can help in issuing public health warnings
and alerting vulnerable populations such as children, elderly, and people with respiratory
conditions to avoid exposure during high-pollution periods.

The model could also be expanded to provide real-time predictions and warnings, which would
greatly enhance its utility for air quality management. This could be achieved by integrating real-time data
feeds from air quality monitoring stations across the city, allowing the model to adjust its predictions based
on the current state of the environment.

4.8 Model Limitations and Future Improvements
While the Gradient Boosting Regressor (GBR) model performs well overall, there are areas for
improvement:

1. Short-Term Prediction Accuracy: As shown in September 2024, the model struggles with
sudden spikes in pollution levels. Future models could incorporate external features like
weather data, industrial activities, and traffic volume, which can provide insights into these
short-term fluctuations.

2. Extreme Event Handling: The model can benefit from enhancements in predicting extreme
events, such as wildfires or large-scale industrial accidents. These types of events cause rapid
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changes in air quality, and the model’s ability to handle these could be improved by using
techniques like anomaly detection or reinforcement learning.

3. Data Expansion: Including more comprehensive historical data, such as detailed local
emissions data (from factories or power plants), can improve the model’s ability to understand
the full range of factors that influence air quality.

4. Real-Time Monitoring: To increase the model's accuracy in the short term, it would be
beneficial to develop real-time air quality monitoring systems that provide continuous data
feeds. This would allow the model to make adjustments on the fly based on current
environmental conditions.

5. CONCLUSION

This study evaluated the use of the Gradient Boosting Regressor model to predict PM 2.5 concentrations
in Jakarta. The model performed well, with an R? of 0.91, indicating that it can explain 91% of the variance in
the PM 2.5 data. The Mean Absolute Error (MAE) of 15.2 pg/m? and Mean Squared Error (MSE) of 221.3
demonstrate that the model is reasonably accurate, though it struggles to predict short-term fluctuations caused
by extreme events such as wildfires or sudden industrial emissions.

The model’s performance suggests that it is well-suited for long-term predictions and can be used to
guide air quality management policies. However, its limitations in predicting extreme pollution events highlight
the need for incorporating more data sources and advanced techniques
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