ISSN: 2776-2521 (online)

Volume 2, Number 2, October 2022, Page 17-22 https://journal.physan.org/index.php/jocpes/index

17

Utilizing Machine Learning and Deep Learning Techniques for Forecasting Rainfall and Weather: A Review

Daniela Adolfina Ndaumanu¹, Risnu Irviandi²

¹State of Meteorology Climatology and Geophysics Agency, Tangerang, Banten, Indonesia ²Diponegoro University, Semarang, Jawa Tengah, Indonesia

Article Info

Article history:

Received September 7, 2022 Revised September 12, 2022 Accepted September 13, 2022

Keywords:

Machine Learning Deep Learning Weather Prediction Rainfall Prediction Rainfall Forecasting Weather Forecast Neural Network

ABSTRACT[11]

Machine learning and deep learning are vital for achieving precise rainfall and weather forecasting, which is crucial for agricultural planning, managing water resources, and reducing disaster risks. This study reviews a range of literature on weather and rainfall forecasting, emphasizing deep learning techniques. Additionally, it examines the performance of various machine learning models, including Long Short-Term Memory (LSTM) networks and Support Vector Regression (SVR), in improving forecast accuracy. These methods show notable improvements in accuracy over traditional models. The study's findings suggest that enhanced machine learning and deep learning models can significantly benefit weather forecasting, aiding in climate change adaptation efforts.

This is an open access article under the <u>CC BY-SA</u> license.

Corresponden Author:

Daniela Adolfina Ndaumanu, State of Meteorology Climatology and Geophysics Agency Tangerang City, Banten, Indonesia

Email: airodella@gmail.com

1. INTRODUCTION

Weather and precipitation prediction has become increasingly important for understanding climate change and preparing for its impacts, which are becoming more significant each year. In recent years traditional weather forecasting methods have struggled with the increasing complexity and variability of meteorological data.

Exploring more advanced techniques, such as Machine Learning (ML)[1] and especially Deep Learning (DL)[2], is essential for improving the accuracy of prediction results. Machine Learning and Deep Learning methods are valuable because they enable models to learn directly from data, adapt to complex patterns, and generate more reliable forecasts.

A notable advancement in this area is the application of deep learning models, particularly Long Short-Term Memory (LSTM) networks. These networks are especially proficient in forecasting time series data. LSTM networks have demonstrated their ability to enhance the accuracy of daily rainfall predictions, achieving high precision in locations such as Jimma, Ethiopia [3]. Additionally, other deep learning model, such as the Deep Echo State Network (DeepESN), offer benefits over traditional models when it comes to processing highly complex meteorological data. This has been demonstrated in rainfall prediction applications in Southern Taiwan [4].

Various machine learning techniques, including Support Vector Regression (SVR) and Decision Trees, have been effectively used alongside deep learning for rainfall and weather forecasting. While these models are not as complex as deep learning, they provide practical solutions for medium-scale datasets and have proven effective in specific contexts of weather prediction [5][2][6][7][8]. However, deep learning models are generally preferred because they can better adapt to larger datasets and effectively capture the non-linear characteristics inherent in meteorological data.

This study explores the benefits and applications of Machine Learning and Deep Learning[9][10] models in forecasting rainfall and weather conditions. By analyzing previous research, it will provide an overview of the advancements made in improving the accuracy of forecasts through these approaches. Additionally, the study will discuss challenges related to model complexity and data limitations, and will offer recommendations for future research directions to enhance the reliability of predictions in this vital field.

2. RESEARCH METHOD

This research employs various machine learning models[11] and deep learning frameworks to enhance the accuracy of rainfall prediction and weather forecasting using high-resolution historical datasets [12][13] encompassing a wide range of meteorological variables. The management process is divided into five stages: data acquisition, data preprocessing and feature engineering, model selection and architecture tuning, model training and hyperparameter optimization, and model validation and performance evaluation.

Table 1. management process			
Step	Explanation		
Data Acquisition	consist of important variables including temperature, relative humidity, atmospheric pressure, wind speed, wind direction, and rainfall.Based on research from previous literature, the dataset covers several years with daily and hourly samples, allowing the model to handle diverse climate conditions and seasonal variations effectively. This broad temporal and spatial coverage is essential for building a strong foundation for long-term prediction and multi-step forecasting applications.		
Data Preprocessing and Feature Engineering	The preprocessing and feature engineering stages were carried out meticulously to tackle potential issues related to data quality, variability, and complexity. This ensured that the dataset met the requirements of the machine learning model[3][14].		
Model Selection and Architecture Tuning	To effectively address the non-linear and temporal characteristics of meteorological data, a hybrid approach combining Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) networks is necessary. SVR is adept at handling structured datasets of moderate size[5]. In contrast, LSTM networks, with their recurrent architecture, excel at managing sequential dependencies, which are crucial for identifying temporal patterns in climate data [6].		
Model Training and Hyperparameter Optimization	The dataset was split into training, validation, and testing sets following an 80-10-10 ratio to ensure the model's ability to generalize effectively to new data. Hyperparameter optimization, essential for enhancing predictive performance, is conducted using a grid search approach. This process fine-tunes key parameters, including learning rate, regularization strength, kernel function (for SVR), and the number of layers and neurons in the LSTM. Mini-batch gradient descent is utilized to facilitate efficient and stable training across large datasets, complemented by early stopping and learning rate decay techniques to help reduce overfitting and stabilize model performance[15] [7], [16], [17].		
Model Validation and Performance Evaluation	To thoroughly assess model performance, standard error metrics were employed alongside sophisticated validation techniques. The primary metrics, Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), were selected for their sensitivity to error magnitude and their clarity in the context of weather forecasting [2]. To further evaluate the model's robustness and reliability, five rounds of cross-validation were carried out, offering deeper insights into the model's stability across various data subsets. Moreover, Shapley Additive Explanations (SHAP) analysis was performed to elucidate the impact of each input variable on the predicted outcomes, thereby enhancing the model's interpretability and facilitating the refinement of important features.		

Machine learning and deep learning are effective technologies for weather and rainfall prediction[18]. They enable the development of models that process large datasets, recognize spatial and temporal patterns,

and adapt to different weather conditions. These models improve predictions over time and address the complexities of big data.

This research employs various techniques to enhance the accuracy and robustness of weather prediction models. The following sections highlight commonly used approaches and their effectiveness in managing weather forecasting challenges.

A. Support Vector Regression (SVR)

SVR is a widely used machine learning model that effectively handles complex data patterns, particularly when linear relationships exist within a dataset. It is designed to fit a line (or hyperplane) in a high-dimensional space while minimizing errors. This makes it particularly effective for predicting weather-related data, where even slight deviations can yield meaningful results. SVR has been successfully incorporated into hybrid models, working alongside other techniques (such as M5P regression trees) to improve the accuracy of rainfall predictions [16].

B. Random Forest (RF)

RF is commonly used for both classification and regression tasks, recognized for its ability to handle large datasets and identify intricate patterns. This ensemble method constructs multiple decision trees during training, with each tree making its own prediction. The final prediction is determined by taking the mode (for classification) or the mean (for regression) of all the trees' predictions, which enhances robustness and accuracy[12].

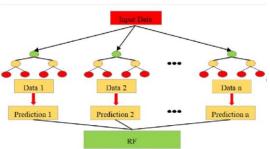


Fig. 1 Random Forest

C. Gradient Boosting Decision Trees (GBDT)

Gradient Boosting Decision Trees (GBDT) is an ensemble learning method that enhances prediction accuracy by constructing decision trees in a sequential manner. Each subsequent tree is designed to rectify the mistakes made by its predecessors. This method is particularly effective for datasets with high spatial variability, which is often seen in weather data. GBDT could effectively manage complex relationships within meteorological data, especially in scenarios requiring high precision, such as fine-scale rainfall forecasts [11].

Fig. 2 Gradient Boosting Decision Trees

D. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are fundamental deep learning models that consist of layers of interconnected nodes, or "neurons," which process information in a manner akin to the human brain. ANNs are capable of capturing non-linear relationships within data, making them appropriate for predicting rainfall where patterns may not be immediately discernible. As a baseline model, ANN [19] are often compared to more sophisticated deep learning architectures like Long Short-Term Memory (LSTM) networks and Recurrent Neural Networks (RNN), which excel at managing temporal dependencies. Although more advanced models are available, ANNs continue to be useful for simpler weather data patterns and frequently serve as a standard for comparison.

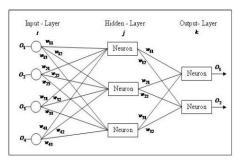


Fig. 3 Artificial Neural Networks

E. Long Short-Term Memory (LSTM)

LSTM networks, a particular form of recurrent neural network (RNN), are highly effective for handling sequential data, which makes them well-suited for time-series forecasting in meteorology. These LSTM cells are engineered to preserve information for longer durations, helping to address the vanishing gradient issue found in conventional RNNs. This capability is essential for capturing temporal dependencies in weather data, such as seasonal variations or recurring patterns of rainfall. LSTM [3] ignificantly surpass traditional machine learning models in dealing with complex time-based data, making them the preferred option for accurate weather forecasting.

F. Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are built to recognize patterns in sequential data, although they are more limited than LSTM networks in handling long-term dependencies. Some studies have employed RNNs for weather predictions, particularly over shorter timescales, where the RNN's simpler structure can effectively capture immediate temporal relationships [14]

G. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are primarily associated with image processing but are also effective for spatial downscaling in precipitation predictions. By identifying patterns in spatial data, CNNs are valuable for predicting high-intensity rainfall. They can be paired with LSTM networks to simultaneously capture both temporal and spatial features. CNN to enhance resolution in precipitation data yielded promising results in accurately predicting localized heavy rainfall when integrated with LSTM for improved spatial-temporal analysis [20].

3. RESULT AND DISCUSSION

This review evaluates the effectiveness of various machine learning (ML) and deep learning (DL) models used to predict rainfall and weather patterns. Each model has its own advantages and unique features, making them suitable for different types of data and forecasting requirements.

Machine learning techniques are highly effective in identifying complex relationships and variations within structured meteorological datasets. In contrast, deep learning models are particularly skilled at managing time series and spatial data, which makes them essential for high-resolution sequential predictions.

The table below displays the outcomes achieved and the accuracy rates of the different models.

Model	Best Use	Accuracy
Support Vector Regression (SVR)	Effective for capturing both linear and non-linear patterns in complex meteorological datasets, particularly useful when paired with other models in hybrid setups for seasonal rainfall prediction.	85% - 92%
Random Forest (RF)	Suitable for daily weather predictions involving large datasets, as it constructs multiple decision trees to identify intricate data patterns while preventing overfitting through averaging.	80% - 88%

Gradient Boosting Decision Trees (GBDT)	Best used for datasets with high spatial variability, as it sequentially builds trees where each corrects the previous one, achieving fine-scale accuracy in rainfall forecasting.	87% - 93%
Artificial Neural Networks (ANN	Useful for capturing non-linear relationships in weather data, making it suitable for simpler rainfall prediction tasks and as a benchmark against more complex models.	75% - 85%
Long Short-Term Memory (LSTM)	Ideal for time-series predictions in meteorology due to its memory retention ability, allowing it to capture long-term dependencies like seasonal and recurring rainfall patterns.	92% - 99.72%
Recurrent Neural Networks (RNN)	Effective for short-term weather predictions, capturing immediate temporal relationships but with limitations on long-term dependencies due to the vanishing gradient problem.	78% - 88%
Convolutional Neural Networks (CNN)	Highly effective for spatial data processing in rainfall prediction, especially when downscaling to high-resolution data. When combined with LSTM, it captures both spatial and temporal features.	85% - 93%

The findings indicate that machine learning (ML) and deep learning (DL) methods offer distinct advantages for predicting rainfall and weather patterns. Each model has its own strengths, highlighting the importance of selecting an appropriate method based on the characteristics of the data and the specific forecasting requirements.

Machine learning approaches have proven effective in handling structured meteorological data. SVR is particularly skilled at identifying both linear and non-linear relationships, making it valuable for hybrid models focused on forecasting seasonal rainfall. RF is beneficial for large datasets; it creates multiple decision trees, enhancing robustness and minimizing overfitting. The sequential approach of GBDT, where each tree builds upon the previous one, is especially effective for datasets with high spatial variability, often leading to accurate rainfall predictions.

Deep learning models are highly effective at recognizing complex temporal and spatial relationships. LSTM networks are particularly advantageous for sequential data in weather forecasting, as they can maintain long-term dependencies, making them ideal for predicting recurring weather phenomena. While RNNs may struggle with long-term dependencies, they are still useful for short-term forecasts. CNNs, usually employed in image analysis, excel at capturing small spatial scales for rainfall prediction. When combined with LSTM, they effectively capture both spatial and temporal features, thereby enhancing accuracy in regions with significant rainfall variability.

These findings underscore the value of integrating machine learning (ML) and deep learning (DL) models to improve prediction accuracy. Machine learning models are typically more suitable for structured data and simpler patterns, whereas deep learning models excel with complex, time-sensitive, and location-specific data. Future research could investigate hybrid model configurations that leverage the strengths of both ML and DL approaches, resulting in a more comprehensive strategy for meteorological forecasting.

4. CONCLUSION

The conclusion highlights the significant impact that machine learning and deep learning models have on enhancing the precision of rainfall and weather forecasts. Machine learning shows impressive results with structured data and simpler patterns, particularly when implemented in hybrid forecasting models for seasonal variations. On the other hand, deep learning is adept at recognizing temporal and spatial patterns, which makes it particularly effective for intricate weather forecasting challenges. Moving forward, research efforts should concentrate on creating more cohesive hybrid models and investigating novel deep learning architectures.

Additionally, expanding datasets and enhancing data features could significantly improve prediction accuracy, ultimately leading to more reliable forecasts in meteorology.

REFERENCE

- [1] Ö. A. Karaman, "Prediction of Wind Power with Machine Learning Models," *Appl. Sci.*, vol. 13, no. 20, Oct. 2023, doi: 10.3390/app132011455.
- [2] S. Narejo, M. M. Jawaid, S. Talpur, R. Baloch, and E. G. A. Pasero, "Multi-step rainfall forecasting using deep learning approach," *PeerJ Comput. Sci.*, vol. 7, pp. 1–23, 2021, doi: 10.7717/PEERJ-CS.514.
- D. Endalie, G. Haile, and W. Taye, "Deep learning model for daily rainfall prediction: case study of Jimma, Ethiopia," *Water Supply*, vol. 22, no. 3, pp. 3448–3461, Mar. 2022, doi: 10.2166/WS.2021.391.
- [4] M. H. Yen, D. W. Liu, Y. C. Hsin, C. E. Lin, and C. C. Chen, "Application of the deep learning for the prediction of rainfall in Southern Taiwan," *Sci. Rep.*, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-49242-6.
- [5] M. Mohammed, R. Kolapalli, N. Golla, and S. S. Maturi, "Prediction Of Rainfall Using Machine Learning Techniques," *Int. J. Sci. Technol. Res.*, vol. 9, p. 1, 2020, [Online]. Available: www.ijstr.org
- [6] S. Singh, M. Kaushik, A. Gupta, and A. Kumar Malviyaanilkmalviya, "Weather Forecasting using Machine Learning Techniques." [Online]. Available: https://ssrn.com/abstract=3350281
- [7] S. Madan, P. Kumar, S. Rawat, and T. Choudhury, "Analysis of Weather Prediction using Machine Learning & Big Data," *Int. Conf. Adv. Comput. Commun. Eng.*, 2018.
- [8] P. B. Gibson, W. E. Chapman, A. Altinok, L. Delle Monache, M. J. DeFlorio, and D. E. Waliser, "Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts," *Commun. Earth Environ.*, vol. 2, no. 1, Dec. 2021, doi: 10.1038/s43247-021-00225-4.
- [9] K. H. Christian Janiesch, Patrick Zschech, "Machine learning and deep learning," *Electron. Mark.*, 2021.
- [10] "A Survey of Weather Forecasting based on Machine Learning and Deep Learning Techniques," *Int. J. Emerg. Trends Eng. Res.*, vol. 9, no. 7, pp. 988–993, Jul. 2021, doi: 10.30534/ijeter/2021/24972021.
- [11] B. Schulz and S. Lerch, "Machine Learning Methods for Postprocessing Ensemble Forecasts of Wind Gusts: A Systematic Comparison", doi: 10.1175/MWR-D-21.
- [12] S. Nalluri, S. Ramasubbareddy, and G. Kannayaram, "Weather prediction using clustering strategies in machine learning," *J. Comput. Theor. Nanosci.*, vol. 16, no. 5–6, pp. 1977–1981, 2019, doi: 10.1166/jctn.2019.7835.
- [13] B. Bochenek and Z. Ustrnul, "Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives," *Atmosphere (Basel).*, vol. 13, no. 2, Feb. 2022, doi: 10.3390/atmos13020180.
- P. Kanchan and N. Kumar Shardoor, "Rainfall Analysis and Forecasting Using Deep Learning Technique," *J. Informatics Electr. Electron. Eng.*, vol. 02, no. 015, pp. 1–11, 2021, doi: 10.54060/JIEEE/002.02.015.
- [15] C. M. Liyew and H. A. Melese, "Machine learning techniques to predict daily rainfall amount," *J. Big Data*, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00545-4.
- [16] F. Di Nunno, F. Granata, Q. B. Pham, and G. de Marinis, "Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model," *Sustain.*, vol. 14, no. 5, Mar. 2022, doi: 10.3390/su14052663.
- [17] P. Du, "Ensemble Machine Learning-Based Wind Forecasting to Combine NWP Output with Data from Weather Station," *IEEE Trans. Sustain. Energy*, vol. 10, no. 4, pp. 2133–2141, Oct. 2019, doi: 10.1109/TSTE.2018.2880615.
- [18] S. Murugan Bhagavathi *et al.*, "Weather forecasting and prediction using hybrid C5.0 machine learning algorithm," Jul. 10, 2021, *John Wiley and Sons Ltd.* doi: 10.1002/dac.4805.
- [19] Kumar Abhishek; Abhay Kumar; Rajeev Ranjan; Sarthak Kumar, "A Rainfall Prediction Model using Artificial Neural Network," 2012.
- [20] E. R. Rodrigues, I. Oliveira, R. Cunha, and M. Netto, "DeepDownscale: A deep learning strategy for high-resolution weather forecast," in *Proceedings IEEE 14th International Conference on eScience, e-Science 2018*, Institute of Electrical and Electronics Engineers Inc., Dec. 2018, pp. 415–422. doi: 10.1109/eScience.2018.00130.