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1. INTRODUCTION

The Indian Ocean Dipole (IOD) constitutes a pivotal climatic phenomenon, distinguished by the
anomalous fluctuations in sea surface temperatures within the Indian Ocean. This phenomenon significantly
affects meteorological patterns and climate variability in adjacent areas, notably Southeast Asia and Australia
[1]. Grasping the intricate dynamics of the 10D is imperative for anticipating its ramifications on regional
meteorology, agriculture, and hydrological resources [2].

Recent investigations have underscored the escalating occurrence and severity of extreme
meteorological events linked to the IOD, which may result in dire outcomes such as droughts and inundations
[3]. As climate change progressively modifies global meteorological patterns, the demand for precise predictive
models becomes increasingly urgent [4]. Machine learning methodologies have surfaced as potent instruments
for scrutinizing intricate datasets and enhancing predictive precision across diverse domains, including climate
science [5].

This research aims to apply machine learning approaches, specifically Random Forest and Decision
Tree models, to classify 10D phenomena using sea surface temperature (SST), mean sea level pressure
(MSLP), and total precipitation data from the waters off West Sumatra. By leveraging these advanced
techniques, the study seeks to enhance the understanding of the factors influencing 10D and improve the
accuracy of climate predictions.

The objectives of this study are as follows:
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e To analyze the performance of Random Forest and Decision Tree models in classifying IOD
conditions.

e To identify the most significant predictors influencing 10D classification.

e To contribute to the development of more effective climate prediction models that can inform
decision-making processes for climate resilience in the region.

The findings of this research are expected to provide valuable insights into the behavior of 10D and
its implications for regional climate patterns, ultimately supporting efforts to mitigate the impacts of climate
change.

2. THEORY
2.1 Data Location
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Fig.1. Geographical Location of the Study Area for Indian Ocean Dipole Analysis

The data used in this study is collected from the waters off West Sumatra, Indonesia, which is located
within the geographical coordinates of approximately -3.752433° (North) to -5.690321° (South) latitude and
98.205256° (West) to 101.676936° (East) longitude. This region is significant due to its unique climatic
conditions influenced by the Indian Ocean Dipole (IOD). The IOD phenomenon has a profound impact on the
weather patterns in this area, affecting rainfall distribution and temperature variations. Understanding the
geographical context is crucial for interpreting the data accurately, as local environmental factors can
significantly influence the results of the analysis [4], [6].

The waters off West Sumatra are characterized by a tropical maritime climate, which is essential for
the study of IOD. The region experiences two main seasons: the wet season, which typically occurs from
November to March, and the dry season from April to October. These seasonal variations are closely linked to
the 10D, as changes in sea surface temperatures can lead to significant shifts in precipitation patterns [7]. By
analyzing data from this specific location, the study aims to provide insights into how 10D influences local
weather and climate dynamics.

2.2 Sea Surface Temperature (SST)

Sea Surface Temperature (SST) is a critical parameter in climate studies, as it directly affects
atmospheric circulation and weather patterns. SST influences the evaporation rate of water, which in turn
affects humidity levels and precipitation. Variations in SST can lead to significant climatic events, such as El
Nifio and La Nifia, which are closely related to the Indian Ocean Dipole (10D) [8].

In this study, SST data is sourced from the European Centre for Medium-Range Weather Forecasts
(ECMWEF), which provides reliable and comprehensive datasets for oceanographic research. By analyzing
SST, the research aims to understand its role as a predictor in classifying 10D conditions and its impact on
local weather patterns.

2.3 Mean Sea Level Pressure (MSLP)

Mean Sea Level Pressure (MSLP) is another vital parameter that helps in understanding the dynamics
of weather systems. MSLP is the average atmospheric pressure at sea level, which is influenced by temperature,
humidity, and wind patterns. Changes in MSLP can indicate the development of high-pressure or low-pressure
systems, which are essential for predicting weather events such as storms and cyclones [9].

The MSLP data used in this study is obtained from the European Centre for Medium-Range Weather
Forecasts (ECMWF), known for its high-quality meteorological data. By incorporating MSLP into the analysis,
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the research seeks to evaluate its significance as a predictor for IOD classification and its relationship with SST
and precipitation.

2.4 Total Precipitation

Total precipitation is a crucial parameter that measures the amount of rain or snow that falls in a
specific area over a defined period. It is a key indicator of water availability, which directly impacts agriculture,
water resources, and ecosystem health. Understanding precipitation patterns is essential for assessing the
effects of 10D on local climates [10].

In this study, total precipitation data is sourced from the European Centre for Medium-Range Weather
Forecasts (ECMWF), which provides accurate and localized weather data for Indonesia. By analyzing total
precipitation alongside SST and MSLP, the research aims to provide a comprehensive understanding of the
factors influencing 10D and their implications for regional climate patterns.

2.5 Mathematical Models and Equations

In this research, machine learning models such as Random Forest and Decision Tree are employed
to classify 10D conditions based on various predictors. The Random Forest algorithm is an ensemble learning
method that constructs multiple decision trees during training and outputs the mode of their predictions. The
basic formula for a decision tree can be expressed as follows:

Cc
Gini(D) =1— Z P?
i=1

L

Where Gini(D) is the Gini impurity of dataset D, Cis the number of classes, and piis the
proportion of instances belonging to class i [11]. This formula helps in determining the best split at each node
of the tree, aiming to minimize impurity and improve classification accuracy. Additionally, the Decision Tree
model can be represented mathematically by the following recursive function:

] if Dispure
Tree(D) = {Leaf (D) Split(D) ———

This function indicates that if the dataset D is pure (i.e., all instances belong to a single class), a
leaf node is created. Otherwise, the dataset is split based on the best feature to maximize information gain [12].

2.6 Importance of Predictors

The selection of predictors is a critical step in the modeling process. In this study, Sea Surface
Temperature (SST), Mean Sea Level Pressure (MSLP), and total precipitation are identified as the primary
features influencing 10D classification. SST is particularly significant as it directly affects atmospheric
circulation patterns and, consequently, precipitation distribution [13]. MSLP serves as an indicator of weather
systems and can provide insights into the stability of the atmosphere, while total precipitation reflects the
outcome of these atmospheric processes.

Understanding the relationships between these predictors and 10D is essential for developing accurate
predictive models. Previous research has shown that variations in SST can lead to significant changes in MSLP
and precipitation patterns, highlighting the interconnectedness of these variables [14]. By analyzing these
relationships, the study aims to enhance the predictive capabilities of machine learning models in classifying
10D conditions [15].

3. METHODOLOGY

The methodology employed in this research is designed to systematically analyze the Indian Ocean
Dipole (IOD) phenomena using machine learning techniques. The data for this study is collected from the
European Centre for Medium-Range Weather Forecasts (ECMWF), which provides reliable datasets for sea
surface temperature (SST), mean sea level pressure (MSLP), and total precipitation. The quality and relevance
of the data are crucial, as they directly impact the outcomes of the analysis [16].

Data preprocessing is the next step, where the collected data is cleaned to remove inconsistencies and
missing values. This process also includes normalizing the data to ensure that all features are on a similar scale,
which is essential for improving the performance of machine learning algorithms. Following preprocessing,
feature selection is conducted to identify the most significant predictors for classifying 10D conditions,
focusing on features that contribute most to the model's predictive power [17].
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3.1 Build Programs

The program developed for this research utilizes Python and its libraries, including pandas for data
manipulation and scikit-learn for implementing machine learning models. The program follows a structured
approach, beginning with data loading and preprocessing, followed by feature selection and model training.
The flowchart below illustrates the research methodology, highlighting the key steps involved in the analysis.

ig. 3. Proa For Decision Tree Model

3.2 Data Acquisition
The following flowchart illustrates the research methodology employed in this study:
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Fig. 4. Flowchart of Machine Learning Process for Indian Ocean Dipole Classification

3.3 Data Collection

Data collection is the foundational step in this research, where various datasets are gathered to analyze
the 10D phenomena. The primary sources of data include ECMWF for SST, MSLP, and total precipitation.
Each dataset is selected based on its relevance and reliability, ensuring that the analysis is grounded in accurate
information. The collected data spans several years, providing a comprehensive view of the climatic conditions
associated with 10D [18].

3.4 Data Processing

Data preprocessing is a critical phase that involves several steps to prepare the collected data for
analysis. This process begins with data cleaning, where any inconsistencies, missing values, or outliers are
addressed. Missing values can significantly affect the performance of machine learning models, so they are
either filled using interpolation methods or removed if they are too numerous [19].

Next, normalization is performed to ensure that all features are on a similar scale. This is particularly
important for algorithms like Decision Trees and Random Forests, which can be sensitive to the scale of the
input data. Normalization helps in improving the convergence speed and overall performance of the models.

Following normalization, feature selection is conducted to identify the most significant predictors for
classifying 10D conditions. This step focuses on determining which features contribute most to the model's
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predictive power. The importance of each feature is evaluated using metrics such as Gini importance or mean
decrease impurity, which quantify how much each feature contributes to the model's accuracy.

The following figures illustrate the feature importance for both the Decision Tree and Random Forest
models:

Feature Importance - Random Forest

SST MSLP Rainfall

Figure 5. Feature Importance - Random Forest

Feature Importance - Decision Tree

SST MSLP Rainfall

Figure 6. Feature Importance - Decision Tree

3.5 Model Training and Evaluation

In the model training phase, the selected features are used to train the Random Forest and Decision
Tree models. The training process involves splitting the dataset into training and testing sets to evaluate the
models' performance accurately. Various metrics, including accuracy, precision, recall, and F1-score, are
employed to assess how well the models classify 10D conditions. This evaluation is crucial for understanding
the effectiveness of the models and their potential applications in climate prediction.

4, RESULT

The findings derived from the comprehensive analysis conducted in this study yield highly valuable
and substantive insights regarding the performance metrics associated with the Random Forest and Decision
Tree models, particularly in the context of classifying the complex climatic conditions represented by the Indian
Ocean Dipole (IOD). Upon meticulous examination of the confusion matrices generated for both modeling
approaches, it becomes evident that there are pronounced and significant discrepancies in their respective
predictive capabilities, which merit further investigation. In the case of the Random Forest model, the
evaluation of the confusion matrix reveals that it successfully classified an impressive total of 5,564 instances
corresponding to neutral 10D conditions, while only recording a modest number of 61 misclassifications
pertaining to negative 10D conditions. This outcome culminates in an exceptionally high accuracy rate, thereby
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underscoring the model's robust effectiveness in navigating and managing intricate datasets, as well as its
remarkable capacity to generalize and perform effectively when confronted with previously unseen data
scenarios.

In contrast to the previously discussed models, the Decision Tree model exhibits a marginally inferior
performance level, as evidenced by its capacity to accurately classify a total of 5,477 instances of neutral Indian
Ocean Dipole (IOD) conditions, while concurrently misclassifying 210 instances that should have been
identified as positive 10D conditions. Although the Decision Tree model possesses the advantage of
interpretability and offers distinctly delineated decision pathways that enhance understanding of its processes,
it unfortunately appears to demonstrate a greater susceptibility to the phenomenon of overfitting when
compared to the Random Forest model. This particular tendency towards overfitting is manifest in the increased
frequency of misclassifications, which can be directly linked to the Decision Tree's inherent sensitivity to
extraneous noise and variability present within the dataset, as articulated in the seminal work of Quinlan [5],
[13], [20].

Confusion Matrix - Random Forest
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Figure 7. Confusion Matrix - Random Forest

Confusion Matrix - Decision Tree
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Figure 8. Confusion Matrix — Decision Tree

Further reinforcing the aforementioned findings, the analysis of feature importance reveals that both
modeling approaches have consistently identified Mean Sea Level Pressure (MSLP) as the most critical
predictor variable, followed in order of significance by total precipitation and Sea Surface Temperature (SST).
Nevertheless, the Random Forest model has exhibited a pronounced capacity to effectively exploit and leverage
the intricate relationships that exist between these various features, leading to a corresponding enhancement in
classification accuracy that is noteworthy. This observation underscores the substantial advantages inherent to
ensemble methodologies such as Random Forest, particularly in their ability to capture and model complex
interactions that exist within the data, thereby rendering it a more robust and preferable option for tasks
associated with climate prediction.
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The bar charts that illustrate the distribution of 10D labels assigned by both models across multiple
years serve to provide additional contextual information that elucidates the results obtained. Throughout the
years analyzed, the Random Forest model consistently forecasts a larger number of neutral 10D conditions,
whereas the Decision Tree model also indicates a similar trend but is characterized by a somewhat greater
degree of variability in the classifications of both negative and positive 10D conditions. The remarkable
consistency in the predictions rendered by the Random Forest model may suggest that it is particularly well-
suited for applications involving long-term climate forecasting, given its ability to sustain accuracy across
diverse temporal scales and intervals.

10D Label - Random Forest

6000 10 Label

- -1 (Negatif)
0 (Netrall
-1 (Positif)
00
4000
£
3 w00
2000
1000
0
o ® o o
& o & &
L4 < -~ '
‘ear

Figure 9. 10D Label - Random Forest

10D Label - Decision Tree
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Figure 10. IOD Label - Decision Tree

In summary, the results derived from this analysis suggest that while both modeling techniques exhibit
certain strengths, the Random Forest model distinctly outperforms the Decision Tree model in its capacity to
accurately classify various 10D conditions. This significant finding emphasizes the critical importance of
judiciously selecting appropriate machine learning techniques when conducting climate studies, as the model
chosen can profoundly influence both the accuracy and reliability of predictive outcomes. The insights garnered
from this research illuminate the considerable potential that machine learning methodologies hold in enhancing
our understanding of the Indian Ocean Dipole phenomenon and its subsequent impacts on regional
meteorological trends, thereby facilitating substantive improvements in climate forecasting models and
informing decision-making frameworks pertinent to climate adaptation strategies.

5. CONCLUSION

In the present investigation, we examined the deployment of machine learning methodologies, namely
Random Forest and Decision Tree frameworks, to categorize Indian Ocean Dipole (I0D) phenomena utilizing
datasets from the European Centre for Medium-Range Weather Forecasts (ECMWEF). The findings revealed
that the Random Forest framework surpassed the Decision Tree framework in terms of classification precision,
proficiently recognizing critical predictors including mean sea level pressure (MSLP) and total precipitation.
This underscores the efficacy of ensemble methodologies in elucidating intricate interrelations within climatic
datasets, thereby rendering them an invaluable instrument for climate forecasting.

The revelations derived from this inquiry emphasize the significance of selecting suitable machine
learning methodologies for comprehending 10D and its ramifications on regional meteorological patterns. By
enhancing the precision of climate forecasting models, this research aids in the formulation of more efficacious
decision-making paradigms for climate adaptation. As climate change persists in presenting global challenges,
the utilization of advanced analytical techniques such as machine learning can bolster our capacity to respond
to and alleviate the ramifications of evolving climatic conditions.
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