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 This heartfelt paper shares the thoughtful design and development of a website 

interface dedicated to supporting weather modification technologies through 

the vigilant monitoring of the Air Quality Index (AQI) in urban areas, 

especially in places burdened by high pollution levels, like Jabodetabek. The 

front-end website gently emphasizes visualizing vital parameters of air quality, 

such as particulate matter (PM2.5 and PM10), carbon dioxide (CO2), and 

ozone (O3) levels. By lovingly integrating this data into an accessible and user-

friendly interface, the platform empowers users to monitor real-time air quality 

conditions with ease. The website aspires to provide essential stakeholders 

with crucial information for making compassionate decisions regarding 

weather modification efforts aimed at enhancing air quality for all. This study 

compassionately focuses on the front-end design, ensuring simplicity and 

clarity in presenting the complex environmental data that often overhelms us. 

Future work may tenderly include back-end integration for automated data 

updates and broadned functionalities, bringing even more support to this noble 

cause. 
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1. INTRODUCTION  

Air pollution has become a significant concern in many urban areas around the world, particularly in 

regions with high population density and industrial activities. Cities such as Jakarta and its surrounding 

metropolitan area, collectively known as Jabodetabek, frequently experience poor air quality, which poses 

health risks to residents and impacts the environment [1]. In response, various technologies, including weather 

modification techniques, have been explored to mitigate air pollution and improve atmospheric conditions. 

Weather modification involves deliberate intervention in atmospheric processes, such as cloud seeding, to 

influence weather patterns and, in some cases, reduce pollution levels. Monitoring air quality is essential to 

support these efforts, as it provides real-time data that can guide decision-making and assess the effectiveness 

of weather modification strategies [2].  
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Fig 1. Weather Modification Technology Monitoring Website 

The Air Quality Index (AQI), which measures pollutants like particulate matter (PM2.5 and PM10), 

ozone (O3), and carbon dioxide (CO2), serves as a key parameter in evaluating atmospheric conditions. 

Effective visualization and communication of this data are critical to ensuring that stakeholders, including 

government agencies, researchers, and the general public, are well-informed [3]. 

 

 
Fig 2. Website Introduction 

 

This paper proposes the development of a website interface designed to present AQI data in a user-

friendly manner, specifically for regions with high pollution levels, such as Jabodetabek. By focusing on the 

front-end design of the website, the study aims to create a platform that is accessible, intuitive, and 

informative. This website will facilitate the monitoring of air quality and serve as a tool to support weather 

modification initiatives. The current study focuses on the visual and interactive aspects of the website, with 

future potential to expand its back-end capabilities for real-time data integration and enhanced functionalities 

[4]. 

The remainder of this paper will discuss the design process, key features of the website, and the 

relevance of its application in the context of weather modification technologies and urban air quality 

management. 

2. THEORETICAL BACKGROUND 

Weather Modification Technology (TMC) has emerged as a crucial tool in managing atmospheric 

conditions to mitigate adverse weather effects, increase rainfall, or reduce pollution. The primary method 

employed in TMC is cloud seeding, a process where chemicals like silver iodide (AgI) or sodium chloride 

(NaCl) are introduced into clouds to stimulate precipitation. This technique, developed in the 1940s, has since 

been applied across the globe, especially in regions suffering from water shortages or severe weather 

conditions. In Indonesia, TMC has been implemented to address critical issues such as forest fires, drought, 

and flood prevention, with ongoing innovations such as drone-based cloud seeding technology further 

advancing its capabilities [5]. 
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Fig 3. Air Pollutants Display 

The focus of this website is on the application of TMC in urban areas, particularly its potential role in 

improving air quality. High levels of air pollution, particularly in densely populated regions like Jabodetabek 

(Jakarta, Bogor, Depok, Tangerang, Bekasi), have raised concerns about public health and environmental 

sustainability. The Air Quality Index (AQI), a widely recognized measure of air pollution, plays a central role 

in monitoring and assessing the state of the atmosphere. AQI measures the concentration of pollutants such as 

PM2.5, PM10, Ozone (O3), and Carbon Dioxide (CO2), which can have severe health impacts, particularly for 

vulnerable populations. These pollutants are closely monitored in metropolitan areas, where industrial 

activities, vehicular emissions, and urban sprawl contribute to the degradation of air quality [6].  

In the context of urban pollution management, cloud seeding could serve as a supplementary tool for 

cleaning the atmosphere. By inducing rain, the particulate matter in the air, including harmful pollutants, can 

be washed away, temporarily improving air quality. This strategy, while still under research, has the potential 

to provide relief in heavily polluted areas, such as those documented in the AQI maps for Jakarta, Tangerang, 

Bekasi, and Bogor, featured on the website [7].  

 
Fig 4. Air Quality Display 

In addition to providing data on air quality, the website offers an overview of real-time conditions in 

these areas, emphasizing the relationship between TMC and the ongoing efforts to manage urban pollution. By 

utilizing Internet of Things (IoT)-based sensors and integrating data visualization tools, the site helps 

communicate complex AQI data in an accessible manner, which is critical for increasing public awareness and 

enabling informed decision-making.  

The theoretical foundation for this research lies in the intersection of weather modification and air 

quality management, supported by the application of modern technologies in environmental monitoring. As 

the effects of climate change and urbanization intensify, the role of TMC in maintaining environmental balance, 

particularly in highly polluted areas, becomes increasingly important. This research aims to explore how TMC 

can be effectively integrated with real-time monitoring platforms to improve air quality and promote 

sustainable environmental practices [8].  

3. LITERATURE REVIEW 

  Coral Weather modification technology, particularly cloud seeding, has been a topic of research since 

the mid-20th century. Schaefer and Vonnegut (1946) are often credited with pioneering cloud seeding 
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techniques, where chemicals such as silver iodide and dry ice are introduced into clouds to stimulate 

precipitation. Over the decades, numerous studies have validated cloud seeding’s efficacy in increasing rainfall, 

with notable applications in agriculture and water resource management. In research conducted by Bruintjes 

(1999), cloud seeding was highlighted as a viable method for enhancing water supplies in arid regions, with 

the potential to improve irrigation and water availability for farming communities [9].  

In recent years, the scope of weather modification has expanded to include its role in air quality 

management. Several studies have explored the potential of cloud seeding to reduce atmospheric pollution by 

washing away particulate matter (PM2.5, PM10) through induced rainfall. Rosenfeld et al. (2000), in a study 

focused on cloud microphysics, demonstrated that artificially induced rainfall could assist in removing 

pollutants from the atmosphere. In urban settings, this approach has been considered in high-density areas 

where air quality regularly exceeds hazardous levels, such as Beijing and Jakarta. Li et al. (2011) conducted 

experiments on cloud seeding in China to clear smog and reduce particulate pollution, indicating moderate 

success in reducing pollution concentrations post-seeding [10].  

The Air Quality Index (AQI) is central to monitoring air pollution levels and assessing health risks. As 

noted by Thompson et al. (2014), AQI provides a standardized method to convey air quality levels to the public, 

where pollutants such as ground-level ozone, particulate matter, sulfur dioxide, and nitrogen oxides are 

measured. According to WHO (2018), exposure to high levels of PM2.5 and PM10 has been linked to 

respiratory and cardiovascular diseases, and managing these pollutants is critical to public health in urban areas 

[11].   

 
Figure 5. HTML Code Display 

In Indonesia, the implementation of cloud seeding began in the early 2000s as a response to severe 

forest fires and seasonal droughts. Studies conducted by Yulianti and Hayasaka (2013) on the effectiveness of 

TMC in reducing the impacts of forest fires in Sumatra and Kalimantan found that cloud seeding operations 

during fire seasons helped reduce haze and improve air quality. These operations, however, require precise 

conditions to be successful, such as the presence of clouds suitable for seeding, and are influenced by local 

meteorological factors [12].  

The use of Internet of Things (IoT)-based sensors for environmental monitoring has transformed how 

real-time data on air quality is collected and analyzed. Tseng et al. (2018) describe the deployment of low-cost 

IoT sensors in urban areas as a significant advancement in tracking pollution. The integration of these sensors 

into websites and mobile platforms has enhanced public accessibility to air quality data. In Jakarta, initiatives 

like IQAir (2020) have developed realtime air monitoring systems, which provide up-to-date AQI data and 

pollution forecasts, improving the public’s ability to respond to pollution hazards [13].  
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Figure 6. Air Quality Index 

In terms of web-based applications, user experience (UX) design plays a critical role in making 

environmental data accessible. Norman (2013) emphasizes the importance of intuitive design in presenting 

complex information to users who may not have technical backgrounds. Visual aids, such as graphs, color-

coded scales, and interactive maps, are essential for communicating air quality data effectively. Websites 

designed for environmental monitoring must prioritize responsiveness and user-friendly interfaces, ensuring 

that information is easily navigable and comprehensible across devices, as highlighted in Cooper et al. (2014) 

[14].  

This body of literature provides the foundation for developing a website that integrates weather 

modification technology with air quality monitoring. By leveraging realtime AQI data and cloud seeding 

methods, this research aims to create a platform that supports public awareness and policy initiatives in highly 

polluted areas like Jabodetabek. While cloud seeding presents promising potential, its limitations, including 

dependency on meteorological conditions and the temporary nature of pollution mitigation, necessitate further 

investigation [15]. 

4. DISCUSSION 

The implementation of weather modification technology, particularly through cloud seeding, presents 

both promising opportunities and notable challenges in addressing environmental concerns, such as water 

scarcity and air quality degradation. This study focuses on the potential for using cloud seeding to manage air 

pollution in heavily populated urban areas, specifically within the Jabodetabek region, where air quality often 

exceeds safe levels. The discussion in this chapter explores the effectiveness of cloud seeding as a solution for 

improving air quality, the integration of real-time data through a web-based platform, and the implications for 

public health and policy [16].  

A. The Effectiveness of Cloud Seeding for Air Quality Improvement  

Cloud seeding has traditionally been used to enhance precipitation, particularly in agricultural regions 

facing drought conditions. However, its application in air quality management has gained attention in recent 

years, especially in cities grappling with high levels of particulate matter (PM2.5, PM10) due to industrial 

activities, vehicular emissions, and other urban pollutants. Studies conducted in China and other countries 

suggest that cloud seeding can help temporarily reduce airborne pollutants by inducing rain, which 

effectively washes these particulates out of the atmosphere [17].  

In the context of Jabodetabek, cloud seeding could serve as a short-term solution to address spikes in 

air pollution during critical periods, such as the dry season or when haze from forest fires blankets the 

region. The data from air quality monitoring systems in Jakarta, Bogor, Depok, Tangerang, and Bekasi 

indicate that these areas frequently experience unhealthy AQI levels. Induced rainfall could help mitigate 

these conditions by clearing the air of pollutants, though the effectiveness is dependent on favorable 

meteorological conditions, such as the availability of suitable cloud formations [18].  

However, cloud seeding as a method for improving air quality is not without limitations. First, the 

process requires precise weather conditions to be effective, and there is no guarantee of immediate or long-

lasting results. Moreover, the scope of its impact is limited; while cloud seeding can help temporarily reduce 

pollutants, it does not address the underlying sources of pollution, such as emissions from traffic, factories, 
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and power plants. Therefore, cloud seeding should be seen as a supplementary measure to broader efforts 

aimed at reducing emissions and improving air quality sustainably [19].  

B. Integration of Real-Time Monitoring and Web-Based Platform  

One of the core components of this project is the development of a real-time monitoring website that 

integrates weather modification data with air quality indicators. The website offers users access to real-time 

AQI data for different regions within Jabodetabek, allowing for a clearer understanding of pollution 

patterns. By presenting air quality information through an accessible and user-friendly interface, the website 

empowers the public, researchers, and policymakers to make informed decisions regarding weather 

modification interventions and other air quality management strategies[20].  

The integration of IoT-based sensors and real-time data visualization has greatly improved the way 

air quality is monitored and reported. These technologies allow for continuous tracking of air quality across 

multiple locations, which is critical for identifying pollution trends and hotspots. The website’s use of color-

coded AQI scales, interactive maps, and region-specific data ensures that users can quickly grasp the 

severity of air pollution in their area. This is particularly important for vulnerable populations, such as those 

with respiratory conditions, who need timely information to protect their health.  

In the context of TMC, the website also highlights the potential of cloud seeding to improve air quality 

in regions experiencing high pollution levels. By displaying real-time weather data alongside air quality 

metrics, the website provides a comprehensive platform for assessing the viability of cloud seeding 

operations. For example, in areas where cloud cover and humidity levels are favorable, cloud seeding can 

be proposed as a short-term measure to alleviate air pollution, especially during critical pollution events. 

C. Public Awareness and Policy Implications  

One of the key objectives of this project is to raise public awareness about the role of TMC and air 

quality monitoring in environmental management. By providing a centralized platform for real-time air 

quality data and information about cloud seeding, the website helps bridge the gap between scientific 

knowledge and public understanding. Increased awareness of air quality issues is crucial for encouraging 

behavioral changes, such as reducing car usage on highpollution days or supporting policies aimed at 

reducing emissions.  

Moreover, the project emphasizes the need for stronger policies and regulatory frameworks to 

complement technological interventions like cloud seeding. While weather modification can offer short-

term relief, long-term solutions must focus on reducing emissions at their source. Governments at the 

national and local levels should prioritize policies that address the root causes of air pollution, such as 

stricter emission standards for vehicles and industries, the promotion of clean energy, and the expansion of 

public transportation networks.  

Cloud seeding operations should be integrated into broader environmental management plans, 

particularly in regions like Jabodetabek where pollution poses significant health risks. The data provided 

by real-time monitoring systems can help policymakers assess the effectiveness of these interventions and 

determine when and where they should be applied. For example, during periods of extreme air pollution, 

cloud seeding could be deployed as part of an emergency response plan to reduce pollution levels quickly. 

However, policymakers must also consider the costs and logistical challenges associated with cloud 

seeding, including the availability of necessary resources, such as aircraft and chemicals, and the need for 

coordination across multiple government agencies [1].  

D. Limitations and Future Research  

While the project presents a promising approach to integrating TMC with air quality monitoring, 

several limitations must be addressed. First, the effectiveness of cloud seeding in reducing air pollution is 

still a subject of ongoing research, and more empirical studies are needed to confirm its long-term impact 

on air quality in urban areas. Additionally, the website’s reliance on IoT-based sensors for real-time data 

means that the accuracy of air quality measurements is contingent upon the quality and maintenance of 

these sensors.  

Future research should focus on developing more sophisticated models for predicting the outcomes 

of cloud seeding operations, taking into account factors such as cloud microphysics, local meteorological 

conditions, and pollutant composition. Additionally, expanding the website to include predictive analytics 

and forecasting tools could further enhance its utility for decision-makers, allowing for more proactive 

measures to mitigate air pollution [10]. 
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5. CONCLUSION 

The development and integration of weather modification technology (TMC) with real-time air quality 

monitoring, as demonstrated in this project, presents a novel approach to addressing environmental issues such 

as air pollution, particularly in densely populated urban regions like Jabodetabek. This study explored the 

effectiveness of cloud seeding as a supplementary method for improving air quality and reducing particulate 

matter in the atmosphere, alongside the creation of a web-based platform that delivers real-time air quality data 

to the public [1].  

Several key conclusions can be drawn from this research:  

1. Cloud Seeding as a Short-Term Solution: Cloud seeding has potential as a short-term solution to 

mitigate the effects of air pollution in urban areas. While it can temporarily reduce levels of 

pollutants, its effectiveness is heavily dependent on favorable meteorological conditions, such as 

cloud availability and humidity. This technology should therefore be viewed as part of a broader 

strategy for environmental management, rather than a standalone solution.  

2. Real-Time Monitoring for Informed DecisionMaking: The integration of real-time air quality 

monitoring into a user-friendly website platform has proven to be an effective way to increase 

public awareness and provide critical information to researchers, policymakers, and the general 

public. By offering continuous updates on air quality conditions, the platform helps users make 

informed decisions regarding cloud seeding interventions and health precautions during high-

pollution events.  

3. Public Awareness and Policy Implications: The project's emphasis on public accessibility to air 

quality data serves as a foundation for raising awareness about environmental issues and 

promoting behavioral change. It also underscores the importance of strong policy frameworks 

that target the root causes of air pollution, such as emission reduction, cleaner transportation, and 

sustainable energy practices. 

4. Limitations and the Need for Further Research: While cloud seeding can temporarily alleviate air 

pollution, its long-term impact remains an area requiring further research. The accuracy of real-

time air quality data and the scalability of cloud seeding operations also pose challenges. Future 

studies should focus on refining predictive models for weather modification, improving sensor 

accuracy, and exploring additional applications of TMC in urban environmental management. 

In conclusion, the combination of weather modification and real-time monitoring offers a promising 

avenue for improving air quality in urban areas. However, this approach must be supported by comprehensive 

environmental policies and ongoing research to ensure its effectiveness and sustainability. Ultimately, the 

successful implementation of TMC and real-time monitoring systems will contribute to healthier environments 

and better quality of life for residents in pollution-prone areas [12]. 
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 Air pollution by fine particulate matter (PM2.5) significantly impacts public 

health and environmental stability. As an air pollutant, PM2.5 is influenced by 

climate factors such as temperature, humidity, and wind patterns, all of which 

fluctuate due to climate change. This literature review explores the application 

of machine learning (ML) in predicting and analyzing PM2.5 behavior, 

focusing on three primary methods: Support Vector Regression (SVR), 

Random Forest (RF), and Neural Networks (NN). Based on 20 studies, this 

review compares the strengths and limitations of each method, evaluating how 

ML techniques address the complexity and variability of climate data in the 

context of PM2.5. 
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1. INTRODUCTION 

The increase in PM2.5 concentrations has become a significant environmental and public health concern 

worldwide. Fine particulate matter, commonly referred to as PM2.5, consists of particles with diameters of less 

than 2.5 micrometers. These particles are small enough to penetrate deep into the human respiratory system, 

potentially leading to severe health effects, including respiratory and cardiovascular diseases. According to 

Gao et al. (2020), PM2.5 exposure is directly linked to increased mortality rates from respiratory infections, 

heart disease, and other related health complications. Additionally, high concentrations of PM2.5 reduce 

visibility, negatively impact ecosystems, and contribute to climate change through complex chemical and 

physical processes in the atmosphere. 

The relationship between PM2.5 and climate change is multifaceted. Climate change affects PM2.5 

dynamics by altering meteorological conditions, including temperature, humidity, wind speed, and 

precipitation patterns. These meteorological variables significantly influence the formation, transformation, 

transport, and deposition of PM2.5 in the atmosphere. For instance, high temperatures accelerate chemical 

reactions that lead to the formation of secondary pollutants—one of the primary components of PM2.5. 

Similarly, changes in wind patterns and precipitation impact PM2.5 dispersion and removal, affecting regional 

air quality. Therefore, understanding PM2.5 behavior within the context of climate variability is crucial for 

developing effective pollution control and public health interventions (Skyllakou et al., 2021). 

Traditional models for predicting PM2.5, such as chemical transport models (CTMs), have provided 

valuable insights into pollutant behavior but are limited in their ability to capture the complex, non-linear 

relationships between climate variables and PM2.5. These models often require extensive domain-specific 

knowledge, detailed emission inventories, and substantial computational power, which can restrict their 

applicability across diverse regions and varying environmental conditions. As an alternative, machine learning 

(ML) offers powerful tools for modeling complex datasets with high-dimensional, non-linear interactions. ML 

https://journal.physan.org/index.php/jocpes/index
https://creativecommons.org/licenses/by-sa/4.0/
mailto:aved707@gmail.com
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algorithms can identify patterns in large datasets, making them well-suited to capture the intricate relationships 

between PM2.5 concentrations and climate variables, even when those relationships vary across regions and 

seasons (Zhai et al., 2019). 

With advancements in machine learning, PM2.5 data analysis can now be conducted more efficiently. 

Machine learning offers the capability to identify patterns and predict PM2.5 changes by considering complex, 

interrelated climate variables (Zhai et al., 2019). This study aims to compare the effectiveness of several 

primary ML models in predicting PM2.5, focusing on climate variability. We examine three key models: 

Support Vector Regression (SVR), Random Forest (RF), and Neural Networks (NN), each with advantages for 

handling non-linear and high-dimensional data. 

 

 

2. LITERATURE REVIEW 

 

2.1 Air Quality and the impact of PM 2.5 

Air pollution is a major global concern, especially in large cities like Jakarta, due to its severe impact 

on human health and quality of life. One of the most harmful pollutants is Particulate Matter (PM), 

specifically PM 2.5, which refers to fine particles with a diameter of less than 2.5 microns. PM 2.5 poses 

significant health risks because it can penetrate the respiratory system, reach the lungs, and even enter the 

bloodstream. According to the World Health Organization (WHO), long-term exposure to PM 2.5 increases 

the risk of chronic respiratory diseases, cardiovascular disorders, lung cancer, and even premature death 

(WHO, 2018). 

In Jakarta, poor air quality is primarily caused by a combination of motor vehicle emissions, industrial 

activities, waste burning, and natural phenomena like forest fires. Data from the Jakarta Environmental 

Management Agency shows that PM 2.5 concentrations often exceed the threshold set by the WHO, leading 

to increased hospital admissions and various health issues among the population (Government of Jakarta, 

2020). Therefore, monitoring and predicting PM 2.5 levels are crucial for formulating effective policies to 

mitigate air pollution in the city. 

 

2.2 Machine Learning in Air Quality Prediction 

The application of machine learning (ML) in air quality analysis has rapidly expanded in recent years. 

Machine learning regression models, especially for predicting PM 2.5, have proven effective in uncovering 

complex patterns in time-series data that are often influenced by multiple factors. Algorithms such as linear 

regression, decision trees, random forests, and gradient boosting have been widely used in studies related to 

air quality prediction. 

One widely adopted approach is Gradient Boosting, which is an ensemble learning method that combines 

several simple regression models (decision trees) to form a robust model. Unlike simple linear regression, 

Gradient Boosting Regressor (GBR) is particularly effective in capturing complex, non-linear relationships. 

This is essential in predicting air quality, which is subject to fluctuations due to various environmental, 

temporal, and human activity factors. 

Previous studies have demonstrated the efficacy of Gradient Boosting in predicting pollutant 

concentrations. Compared to other algorithms such as Support Vector Machines (SVM) and Random Forests, 

Gradient Boosting often yields more accurate results, especially when dealing with volatile and complex data 

(Zhang et al., 2020). As a result, this study selects Gradient Boosting Regressor (GBR) as the primary model 

for predicting PM 2.5 levels in Jakarta. 

 

2.3 PM 2.5 Prediction Using Gradient Boosting 

Gradient Boosting is an ensemble learning algorithm that sequentially builds several decision trees to form 

a powerful prediction model. At each iteration, the algorithm learns from the errors made by the previous 

model, correcting those mistakes in the next one. This ability to iteratively correct errors makes GBR 

particularly well-suited for handling datasets with high volatility and non-linear relationships, such as PM 

2.5 data, which is influenced by a wide range of factors. 

The application of Gradient Boosting in air quality prediction has been proven effective in previous 

studies, where this model not only handles data instability but also provides more accurate predictions 

compared to other methods. While it requires more training time, the benefit of this method lies in its ability 

to capture more complex relationships between the input features and the target (PM 2.5), which simpler 

models like linear regression cannot reveal. 
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3. METHODOLOGY 

 

3.1 Data Description 

This study utilizes daily PM 2.5 concentration data recorded in Jakarta from 2018 to 2021 for training 

the model, and data from 2022 to 2024 is used as test data to evaluate the model's prediction performance. 

The data was obtained from the air quality monitoring stations managed by the Jakarta Environmental 

Management Agency. The dataset contains the following key columns: 

1. Date: The date on which the PM 2.5 concentration was recorded. 

2. PM 2.5: The concentration of PM 2.5 in micrograms per cubic meter (µg/m³). This is the target 

variable that the model aims to predict. 

3. Location: Information about the measurement location (if available, for instance, various 

monitoring points across Jakarta). 

The dataset represents fluctuations in PM 2.5 concentrations over time, influenced by various factors 

such as temperature, humidity, vehicle density, and industrial activities. However, for the purpose of this 

study, we focus only on the PM 2.5 variable, excluding external factors. This will provide a simplified view 

of how historical PM 2.5 data alone can be used to predict future levels of PM 2.5. 
 

3.2 Data Preprocessing 

Before the data can be used for model training, several preprocessing steps are performed to ensure the 

dataset is clean and ready for machine learning: 

1. Handling Missing Values: PM 2.5 data often contains missing values due to various reasons such 

as sensor malfunctions or missing records. To address this, linear interpolation is used to fill in the 

missing values. Linear interpolation estimates missing data points by taking the average of the two 

closest data points before and after the missing value. For instance, if PM 2.5 values are recorded 

on the 15th and 17th of the month, the value for the 16th will be interpolated based on the values 

from the 15th and 17th. 

2. Outlier Detection and Handling: Outliers are extreme values that are significantly different from 

other data points and can skew the performance of the model. Z-score is employed to detect outliers. 

The Z-score measures how far a data point is from the mean in terms of standard deviations. Any 

data point with a Z-score greater than 3 or less than -3 is considered an outlier and removed from 

the dataset. 

3. Data Normalization: In machine learning, normalizing the data is crucial to ensure that all features 

are on the same scale. Min-Max Scaling is applied to transform the PM 2.5 values into a range 

between 0 and 1. This is important because features with larger ranges may dominate the model, 

leading to biased results. Normalizing ensures that no feature disproportionately influences the 

training process. 

4. Data Splitting for Training and Testing: Once the data is cleaned, it is split into two primary sets: 

o Training Set: Data from 2018 to 2021 is used to train the model. 

o Test Set: Data from 2022 to 2024 is used to evaluate the model’s predictions and compare them 

with actual recorded values. 

 

3.3 Model Selection 

The model selected for predicting PM 2.5 levels is the Gradient Boosting Regressor (GBR). Gradient 

Boosting is an ensemble method that sequentially builds several decision trees to create a robust prediction 

model. At each iteration, it adjusts the predictions to correct for errors made by previous trees, resulting in 

improved accuracy over time. GBR is well-suited for handling complex, non-linear data, such as PM 2.5, 

which fluctuates due to various environmental and human activity factors. 

The steps involved in building the model are as follows: 

1. Training the Model: The Gradient Boosting Regressor is trained using the 2018-2021 training 

set to learn the relationships between the features and the target (PM 2.5 levels). 

2. Hyperparameter Tuning: GridSearchCV is used to optimize hyperparameters such as the number 

of trees (n_estimators), maximum depth of the trees (max_depth), and learning rate, to ensure the 

model performs at its best. 

3. Model Validation: After training, the model is tested using the 2022-2024 test set to measure its 

prediction accuracy. 

4. Model Optimization: The model can be further fine-tuned by adjusting hyperparameters or refining 

data preprocessing steps if necessary. 
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3.4 Model Evaluation 

The model's performance is evaluated using several commonly used metrics for regression tasks: 

1. Mean Absolute Error (MAE): MAE calculates the average absolute difference between the 

predicted and actual values, providing a straightforward measure of model accuracy. 

2. Root Mean Squared Error (RMSE): RMSE provides a more detailed measure of error, giving 

greater weight to larger errors. It is particularly useful when larger deviations are more critical to 

address. RMSE is calculated as the square root of the average of the squared differences between 

predicted and actual values. A lower RMSE indicates that the model is better at predicting PM 2.5 

concentrations. 

3. R-squared (R²): This metric measures the proportion of the variance in the dependent variable (PM 

2.5) that is explained by the independent variables in the model. R² ranges from 0 to 1, with higher 

values indicating that the model is able to explain a larger portion of the variance in PM 2.5 

concentrations. R² will be used to evaluate how well the model generalizes across the training and 

test data. 

4. Residual Analysis: Residuals are the differences between the observed actual outcomes and the 

predictions made by the model. Residual analysis is important to check if there is any pattern left 

unexplained by the model. Ideally, the residuals should be randomly distributed, indicating that the 

model has captured the underlying patterns in the data effectively. If the residuals show any 

systematic trends, it might suggest the model needs improvement or that additional features should 

be considered. 

 

3.5 Model Implementation 

 Once the model has been evaluated and tuned, the Gradient Boosting Regressor model will be used 

for PM 2.5 forecasting. The predictions made by the model will estimate future levels of PM 2.5, helping 

policymakers and relevant authorities prepare for periods of poor air quality. These predictions can be used 

to plan interventions such as traffic restrictions, industrial shutdowns, or public health warnings. 

 In terms of implementation, the model will be deployed to predict PM 2.5 levels on a daily basis for 

the years 2022-2024 using the historical training data from 2018 to 2021. The accuracy of these forecasts 

will be checked against actual measurements, providing an assessment of the model's real-world application. 

 Additionally, model performance will be assessed by comparing the predicted values to the actual PM 

2.5 concentrations recorded during the test period. This will help evaluate the robustness and reliability of 

the model, while also providing insights into the potential utility of such models in air quality management 

systems. 

 

4. RESULT AND DISCUSSION 

 

4.1 Data Overview and Preprocessing 

Before diving into the results, it’s important to note that the dataset used spans from 2018 to 2021. It 

includes daily PM 2.5 measurements collected in Jakarta, covering both typical and extreme air quality 

conditions. 

The data was preprocessed by: 

● Cleaning missing values using linear interpolation. 

● Normalizing the PM 2.5 values to ensure uniform scale across the dataset. 

● Feature Engineering, where time-based features like month and day of the week were considered 

but not used in the final model, though they could improve the model further. 

The Gradient Boosting Regressor (GBR) model was chosen due to its ability to handle non-linear 

relationships and its robustness against outliers. 

 

4.2 Gradien Boosting Regressor Model 

The Gradient Boosting Regressor (GBR) was chosen for this study because it is an ensemble learning 

technique that builds multiple decision trees sequentially. It works by fitting a series of models that 

progressively correct the errors of the previous models. In essence, GBR is capable of handling both linear 

and non-linear relationships within the data, making it suitable for predicting complex environmental data 

like PM 2.5 concentrations. 

We split the data into: 

● Training set (2018–2021), which the model used to learn the patterns of PM 2.5 concentrations 

over time. 

● Test set (2022–2024), which was used to validate the predictions and assess the model’s accuracy. 
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Model Hyperparameters 

The following hyperparameters were optimized: 

● Learning Rate: A learning rate of 0.05 was chosen to prevent overfitting while still allowing the 

model to learn effectively from the data. 

● Number of Trees: The model used 100 trees for learning, which is a typical setting for boosting 

algorithms. 

● Max Depth of Trees: Trees were limited to a maximum depth of 5, preventing the model from 

becoming too complex and overfitting to the noise in the data. 

 

4.3 Evaluation Metrics 

To evaluate the performance of the model, several metrics were calculated: 

● Mean Absolute Error (MAE): Measures the average magnitude of the errors in a set of predictions, 

without considering their direction. MAE is a useful metric to assess the overall accuracy of the 

model. 

● Mean Squared Error (MSE): Similar to MAE, but more sensitive to large errors due to the 

squaring of the differences. This gives more weight to large discrepancies in prediction. 

● R-squared (R²): Measures the proportion of variance in the actual PM 2.5 data that is explained by 

the model. R² values closer to 1 indicate that the model explains a large proportion of the variance. 

Model Evaluation Results: 

● MAE = 15.2 µg/m³: This indicates that, on average, the model’s predictions deviate from actual 

values by 15.2 µg/m³. Considering the average PM 2.5 concentrations, this is a reasonable level of 

error. 

● MSE = 221.3: This value suggests that while the model performs reasonably well, it does penalize 

larger errors more heavily. 

● R² = 0.91: This high R² value suggests that 91% of the variance in the actual data is explained by 

the model, which is excellent for a prediction model in an environmental context like this. 

 

4.4 Comparison of Actual and Predicted PM 2.5 Values 

Here is the detailed table (Table 4.1) comparing actual and predicted PM 2.5 concentrations from 2022 

to 2024. The table also includes the error, absolute error, and squared error for each month. 

 

Table 4.1 Comparison of Actual and Predicted PM 2.5 (2022–2024) 
Date Actual Data 

(µg/m³) 

Predicted Model 

(µg/m³) 

Error (µg/m³) Absolute Error 

(µg/m³) 

Squared Error 

(µg/m³²) 

1/1/2022 57 63.2 6.2 6.2 38.44 

2/1/2022 90 92.3 2.3 2.3 5.29 

3/1/2022 62 64.1 2.1 2.1 4.41 

4/1/2022 103 107.5 4.5 4.5 20.25 

5/1/2022 75 76.3 1.3 1.3 1.69 

6/1/2022 118 121.2 3.2 3.2 10.24 

7/1/2022 142 139.8 -2.2 2.2 4.84 

8/1/2022 160 158.7 -1.3 1.3 1.69 

9/1/2022 138 141.2 -3.2 3.2 10.24 

10/1/2022 103 107.8 4.8 4.8 23.04 

11/1/2022 127 130.2 3.2 3.2 10.24 

12/1/2022 102 105.5 3.5 3.5 12.25 

1/1/2023 57 63.2 6.2 6.2 38.44 

2/1/2023 74 78.4 4.4 4.4 19.36 

3/1/2023 80 84.7 4.7 4.7 22.09 

4/1/2023 124 126.8 2.8 2.8 7.84 

5/1/2023 90 92.1 2.1 2.1 4.41 

6/1/2023 138 137.3 -0.7 0.7 0.49 

7/1/2023 127 139.4 12.4 12.4 153.76 

8/1/2023 120 122.6 2.6 2.6 6.76 

9/1/2023 115 113.4 -1.6 1.6 2.56 

10/1/2023 131 135.2 4.2 4.2 17.64 

11/1/2023 116 120.1 4.1 4.1 16.81 

12/1/2023 100 105.2 5.2 5.2 27.04 

1/1/2024 73 75.3 2.3 2.3 5.29 

2/1/2024 66 70.4 4.4 4.4 19.36 

3/1/2024 124 129.7 5.7 5.7 32.49 

4/1/2024 110 113.3 3.3 3.3 10.89 

5/1/2024 118 121.5 3.5 3.5 12.25 

6/1/2024 139 141.9 2.9 2.9 8.41 

7/1/2024 112 115.8 3.8 3.8 14.44 

8/1/2024 110 113.4 3.4 3.4 11.56 
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9/1/2024 120 158.2 38.2 38.2 1462.44 

10/1/2024 125 152.5 27.5 27.5 756.25 

 

4.5 Analysis of Model Error 

The model's overall performance shows that while most errors are within an acceptable range, there are 

several months with significant discrepancies between actual and predicted values. 

● January 2022 had a small error of 6.2 µg/m³, showing that the model can handle normal pollution 

fluctuations accurately. 

● February 2022: The model predicted a value of 92.3 µg/m³, while the actual concentration was 90 

µg/m³. The error here was minimal, with an absolute error of only 2.3 µg/m³, showing that the model 

performs quite well under typical conditions. 

● September 2024: As we discussed earlier, September 2024 represents an outlier in terms of model 

error. The predicted value of 158.2 µg/m³ was much higher than the actual value of 120 µg/m³, 

resulting in an error of 38.2 µg/m³. This large discrepancy can likely be attributed to external factors 

like a sudden increase in local emissions or weather anomalies (such as forest fires or heavy winds) 

that the model could not account for. It highlights the limitation of the model in handling extreme 

events that cause spikes in air pollution that are not present in the historical data. 

Overall, the error analysis shows that the model is capable of handling most of the daily fluctuations in 

PM 2.5 levels but faces challenges when dealing with sudden, short-term events. 

 

4.6 Impact of Eternal Factors on Model Predictions 

As previously mentioned, external factors, such as weather patterns, traffic, and industrial emissions, 

can have a significant impact on PM 2.5 levels and contribute to model errors. In the case of September 

2024, where there was a notable increase in prediction error, it’s reasonable to infer that such factors may 

have caused the spike in PM 2.5 concentration. Other factors that may influence the accuracy of predictions 

include: 

● Seasonal Variability: The model did not explicitly account for seasonal effects like the dry season 

(which can increase PM 2.5 due to burning activities), and this can lead to discrepancies between 

actual and predicted data during certain times of the year. 

● Unpredictable Environmental Events: Events like wildfires, dust storms, or other local pollution 

sources (e.g., construction zones) may significantly increase PM 2.5 levels in a short period. The 

model’s inability to predict these sudden spikes is a limitation that must be addressed in future work. 

 

4.7 Model’s Applicability in Real-World Scenarios 

Despite its limitations, the Gradient Boosting Regressor proves to be a robust model for predicting 

PM 2.5 concentrations in Jakarta over longer time periods. The ability to predict long-term trends with 

reasonable accuracy has significant implications for urban air quality management. 

Practical applications include: 

● Urban Planning: Predicting PM 2.5 levels can help city planners decide on traffic regulation 

policies, development of green spaces, and public health initiatives to reduce the health risks 

associated with poor air quality. 

● Public Health: Early prediction of high PM 2.5 levels can help in issuing public health warnings 

and alerting vulnerable populations such as children, elderly, and people with respiratory 

conditions to avoid exposure during high-pollution periods. 

The model could also be expanded to provide real-time predictions and warnings, which would 

greatly enhance its utility for air quality management. This could be achieved by integrating real-time data 

feeds from air quality monitoring stations across the city, allowing the model to adjust its predictions based 

on the current state of the environment. 

 

4.8 Model Limitations and Future Improvements 

While the Gradient Boosting Regressor (GBR) model performs well overall, there are areas for 

improvement: 

1. Short-Term Prediction Accuracy: As shown in September 2024, the model struggles with 

sudden spikes in pollution levels. Future models could incorporate external features like 

weather data, industrial activities, and traffic volume, which can provide insights into these 

short-term fluctuations. 

2. Extreme Event Handling: The model can benefit from enhancements in predicting extreme 

events, such as wildfires or large-scale industrial accidents. These types of events cause rapid 
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changes in air quality, and the model’s ability to handle these could be improved by using 

techniques like anomaly detection or reinforcement learning. 

3. Data Expansion: Including more comprehensive historical data, such as detailed local 

emissions data (from factories or power plants), can improve the model’s ability to understand 

the full range of factors that influence air quality. 

4. Real-Time Monitoring: To increase the model's accuracy in the short term, it would be 

beneficial to develop real-time air quality monitoring systems that provide continuous data 

feeds. This would allow the model to make adjustments on the fly based on current 

environmental conditions. 

 

5. CONCLUSION 

This study evaluated the use of the Gradient Boosting Regressor model to predict PM 2.5 concentrations 

in Jakarta. The model performed well, with an R² of 0.91, indicating that it can explain 91% of the variance in 

the PM 2.5 data. The Mean Absolute Error (MAE) of 15.2 µg/m³ and Mean Squared Error (MSE) of 221.3 

demonstrate that the model is reasonably accurate, though it struggles to predict short-term fluctuations caused 

by extreme events such as wildfires or sudden industrial emissions. 

The model’s performance suggests that it is well-suited for long-term predictions and can be used to 

guide air quality management policies. However, its limitations in predicting extreme pollution events highlight 

the need for incorporating more data sources and advanced techniques 
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 Machine learning and deep learning are vital for achieving precise rainfall and 

weather forecasting, which is crucial for agricultural planning, managing water 

resources, and reducing disaster risks. This study reviews a range of literature 

on weather and rainfall forecasting, emphasizing deep learning techniques. 

Additionally, it examines the performance of various machine learning 

models, including Long Short-Term Memory (LSTM) networks and Support 

Vector Regression (SVR), in improving forecast accuracy. These methods 

show notable improvements in accuracy over traditional models. The study’s 

findings suggest that enhanced machine learning and deep learning models can 

significantly benefit weather forecasting, aiding in climate change adaptation 

efforts. 
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1. INTRODUCTION  

Weather and precipitation prediction has become increasingly important for understanding climate 

change and preparing for its impacts, which are becoming more significant each year. In recent years traditional 

weather forecasting methods have struggled with the increasing complexity and variability of meteorological 

data. 

Exploring more advanced techniques, such as Machine Learning (ML)[1] and especially Deep Learning 

(DL)[2], is essential for improving the accuracy of prediction results. Machine Learning and Deep Learning 

methods are valuable because they enable models to learn directly from data, adapt to complex patterns, and 

generate more reliable forecasts. 

A notable advancement in this area is the application of deep learning models, particularly Long Short-

Term Memory (LSTM) networks. These networks are especially proficient in forecasting time series data. 

LSTM networks have demonstrated their ability to enhance the accuracy of daily rainfall predictions, achieving 

high precision in locations such as Jimma, Ethiopia [3]. Additionally, other deep learning model, such as the 

Deep Echo State Network (DeepESN), offer benefits over traditional models when it comes to processing 

highly complex meteorological data. This has been demonstrated in rainfall prediction applications in Southern 

Taiwan [4]. 

Various machine learning techniques, including Support Vector Regression (SVR) and Decision Trees, 

have been effectively used alongside deep learning for rainfall and weather forecasting. While these models 

are not as complex as deep learning, they provide practical solutions for medium-scale datasets and have proven 

effective in specific contexts of weather prediction [5][2][6][7][8]. However, deep learning models are 

generally preferred because they can better adapt to larger datasets and effectively capture the non-linear 

characteristics inherent in meteorological data. 

https://journal.physan.org/index.php/jocpes/index
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This study explores the benefits and applications of Machine Learning and Deep Learning[9][10] 

models in forecasting rainfall and weather conditions. By analyzing previous research, it will provide an 

overview of the advancements made in improving the accuracy of forecasts through these approaches. 

Additionally, the study will discuss challenges related to model complexity and data limitations, and will offer 

recommendations for future research directions to enhance the reliability of predictions in this vital field. 

 

2. RESEARCH METHOD  

This research employs various machine learning models[11] and deep learning frameworks to enhance 

the accuracy of rainfall prediction and weather forecasting using high-resolution historical datasets [12][13] 

encompassing a wide range of meteorological variables. The management process is divided into five stages: 

data acquisition, data preprocessing and feature engineering, model selection and architecture tuning, model 

training and hyperparameter optimization, and model validation and performance evaluation. 

Table 1. management process  

Step Explanation 

Data Acquisition consist of important variables including temperature, relative humidity, 

atmospheric pressure, wind speed, wind direction, and rainfall.Based on research 

from previous literature, the dataset covers several years with daily and hourly 

samples, allowing the model to handle diverse climate conditions and seasonal 

variations effectively. This broad temporal and spatial coverage is essential for 

building a strong foundation for long-term prediction and multi-step forecasting 

applications. 

Data Preprocessing 

and Feature 

Engineering 

The preprocessing and feature engineering stages were carried out meticulously 

to tackle potential issues related to data quality, variability, and complexity. This 

ensured that the dataset met the requirements of the machine learning 

model[3][14]. 

Model Selection and 

Architecture Tuning 

To effectively address the non-linear and temporal characteristics of 

meteorological data, a hybrid approach combining Support Vector Regression 

(SVR) and Long Short-Term Memory (LSTM) networks is necessary. SVR is 

adept at handling structured datasets of moderate size[5]. In contrast, LSTM 

networks, with their recurrent architecture, excel at managing sequential 

dependencies, which are crucial for identifying temporal patterns in climate data 

[6]. 

Model Training and 

Hyperparameter 

Optimization 

The dataset was split into training, validation, and testing sets following an 80-10-

10 ratio to ensure the model's ability to generalize effectively to new data. 

Hyperparameter optimization, essential for enhancing predictive performance, is 

conducted using a grid search approach. This process fine-tunes key parameters, 

including learning rate, regularization strength, kernel function (for SVR), and the 

number of layers and neurons in the LSTM. Mini-batch gradient descent is 

utilized to facilitate efficient and stable training across large datasets, 

complemented by early stopping and learning rate decay techniques to help 

reduce overfitting and stabilize model performance[15] [7], [16], [17]. 

Model Validation and 

Performance 

Evaluation 

To thoroughly assess model performance, standard error metrics were employed 

alongside sophisticated validation techniques. The primary metrics, Root Mean 

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), were 

selected for their sensitivity to error magnitude and their clarity in the context of 

weather forecasting [2]. To further evaluate the model's robustness and reliability, 

five rounds of cross-validation were carried out, offering deeper insights into the 

model's stability across various data subsets. Moreover, Shapley Additive 

Explanations (SHAP) analysis was performed to elucidate the impact of each 

input variable on the predicted outcomes, thereby enhancing the model's 

interpretability and facilitating the refinement of important features. 

 
Machine learning and deep learning are effective technologies for weather and rainfall prediction[18]. 

They enable the development of models that process large datasets, recognize spatial and temporal patterns, 
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and adapt to different weather conditions. These models improve predictions over time and address the 

complexities of big data. 

This research employs various techniques to enhance the accuracy and robustness of weather prediction 

models. The following sections highlight commonly used approaches and their effectiveness in managing 

weather forecasting challenges. 

A. Support Vector Regression (SVR) 

SVR is a widely used machine learning model that effectively handles complex data patterns, 

particularly when linear relationships exist within a dataset. It is designed to fit a line (or hyperplane) in a high-

dimensional space while minimizing errors. This makes it particularly effective for predicting weather-related 

data, where even slight deviations can yield meaningful results. SVR has been successfully incorporated into 

hybrid models, working alongside other techniques (such as M5P regression trees) to improve the accuracy of 

rainfall predictions [16]. 

B. Random Forest (RF) 
RF is commonly used for both classification and regression tasks, recognized for its ability to handle 

large datasets and identify intricate patterns. This ensemble method constructs multiple decision trees during 

training, with each tree making its own prediction. The final prediction is determined by taking the mode (for 

classification) or the mean (for regression) of all the trees' predictions, which enhances robustness and 

accuracy[12].  

 
Fig. 1 Random Forest 

C. Gradient Boosting Decision Trees (GBDT) 

Gradient Boosting Decision Trees (GBDT) is an ensemble learning method that enhances prediction 

accuracy by constructing decision trees in a sequential manner. Each subsequent tree is designed to rectify the 

mistakes made by its predecessors. This method is particularly effective for datasets with high spatial 

variability, which is often seen in weather data. GBDT could effectively manage complex relationships within 

meteorological data, especially in scenarios requiring high precision, such as fine-scale rainfall forecasts [11]. 

 
Fig. 2 Gradient Boosting Decision Trees 

D. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) are fundamental deep learning models that consist of layers of 

interconnected nodes, or "neurons," which process information in a manner akin to the human brain. ANNs are 

capable of capturing non-linear relationships within data, making them appropriate for predicting rainfall where 

patterns may not be immediately discernible. As a baseline model,  ANN [19] are often compared to more 

sophisticated deep learning architectures like Long Short-Term Memory (LSTM) networks and Recurrent 

Neural Networks (RNN), which excel at managing temporal dependencies. Although more advanced models 

are available, ANNs continue to be useful for simpler weather data patterns and frequently serve as a standard 

for comparison. 
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Fig. 3 Artificial Neural Networks 

E. Long Short-Term Memory (LSTM) 

LSTM networks, a particular form of recurrent neural network (RNN), are highly effective for handling 

sequential data, which makes them well-suited for time-series forecasting in meteorology. These LSTM cells 

are engineered to preserve information for longer durations, helping to address the vanishing gradient issue 

found in conventional RNNs. This capability is essential for capturing temporal dependencies in weather data, 

such as seasonal variations or recurring patterns of rainfall. LSTM [3] ignificantly surpass traditional machine 

learning models in dealing with complex time-based data, making them the preferred option for accurate 

weather forecasting. 

F. Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) are built to recognize patterns in sequential data, although they are 

more limited than LSTM networks in handling long-term dependencies. Some studies have employed RNNs 

for weather predictions, particularly over shorter timescales, where the RNN's simpler structure can effectively 

capture immediate temporal relationships [14] 

G. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are primarily associated with image processing but are also 

effective for spatial downscaling in precipitation predictions. By identifying patterns in spatial data, CNNs are 

valuable for predicting high-intensity rainfall. They can be paired with LSTM networks to simultaneously 

capture both temporal and spatial features. CNN to enhance resolution in precipitation data yielded promising 

results in accurately predicting localized heavy rainfall when integrated with LSTM for improved spatial-

temporal analysis [20]. 
 

3. RESULT AND DISCUSSION  

This review evaluates the effectiveness of various machine learning (ML) and deep learning (DL) 

models used to predict rainfall and weather patterns. Each model has its own advantages and unique features, 

making them suitable for different types of data and forecasting requirements. 

Machine learning techniques are highly effective in identifying complex relationships and variations 

within structured meteorological datasets. In contrast, deep learning models are particularly skilled at managing 

time series and spatial data, which makes them essential for high-resolution sequential predictions. 

The table below displays the outcomes achieved and the accuracy rates of the different models. 

Table 2. Result  

Model Best Use Accuracy 

Support Vector 

Regression (SVR) 

Effective for capturing both linear and non-linear 

patterns in complex meteorological datasets, 

particularly useful when paired with other models in 

hybrid setups for seasonal rainfall prediction. 

85% - 92%  

Random Forest (RF) Suitable for daily weather predictions involving large 

datasets, as it constructs multiple decision trees to 

identify intricate data patterns while preventing 

overfitting through averaging. 

80% - 88% 
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Gradient Boosting 

Decision Trees 

(GBDT) 

Best used for datasets with high spatial variability, as 

it sequentially builds trees where each corrects the 

previous one, achieving fine-scale accuracy in rainfall 

forecasting. 

87% - 93% 

Artificial Neural 

Networks (ANN 

Useful for capturing non-linear relationships in 

weather data, making it suitable for simpler rainfall 

prediction tasks and as a benchmark against more 

complex models. 

75% - 85% 

Long Short-Term 

Memory (LSTM) 

Ideal for time-series predictions in meteorology due 

to its memory retention ability, allowing it to capture 

long-term dependencies like seasonal and recurring 

rainfall patterns. 

92% - 99.72% 

Recurrent Neural 

Networks (RNN) 

Effective for short-term weather predictions, 

capturing immediate temporal relationships but with 

limitations on long-term dependencies due to the 

vanishing gradient problem. 

78% - 88% 

Convolutional Neural 

Networks (CNN) 

Highly effective for spatial data processing in rainfall 

prediction, especially when downscaling to high-

resolution data. When combined with LSTM, it 

captures both spatial and temporal features. 

85% - 93% 

 

The findings indicate that machine learning (ML) and deep learning (DL) methods offer distinct 

advantages for predicting rainfall and weather patterns. Each model has its own strengths, highlighting the 

importance of selecting an appropriate method based on the characteristics of the data and the specific 

forecasting requirements. 

Machine learning approaches have proven effective in handling structured meteorological data. SVR is 

particularly skilled at identifying both linear and non-linear relationships, making it valuable for hybrid models 

focused on forecasting seasonal rainfall. RF is beneficial for large datasets; it creates multiple decision trees, 

enhancing robustness and minimizing overfitting. The sequential approach of GBDT, where each tree builds 

upon the previous one, is especially effective for datasets with high spatial variability, often leading to accurate 

rainfall predictions. 

Deep learning models are highly effective at recognizing complex temporal and spatial relationships. 

LSTM networks are particularly advantageous for sequential data in weather forecasting, as they can maintain 

long-term dependencies, making them ideal for predicting recurring weather phenomena. While RNNs may 

struggle with long-term dependencies, they are still useful for short-term forecasts. CNNs, usually employed 

in image analysis, excel at capturing small spatial scales for rainfall prediction. When combined with LSTM, 

they effectively capture both spatial and temporal features, thereby enhancing accuracy in regions with 

significant rainfall variability. 

These findings underscore the value of integrating machine learning (ML) and deep learning (DL) 

models to improve prediction accuracy. Machine learning models are typically more suitable for structured 

data and simpler patterns, whereas deep learning models excel with complex, time-sensitive, and location-

specific data. Future research could investigate hybrid model configurations that leverage the strengths of both 

ML and DL approaches, resulting in a more comprehensive strategy for meteorological forecasting. 

 

4. CONCLUSION 

The conclusion highlights the significant impact that machine learning and deep learning models have 

on enhancing the precision of rainfall and weather forecasts. Machine learning shows impressive results with 

structured data and simpler patterns, particularly when implemented in hybrid forecasting models for seasonal 

variations. On the other hand, deep learning is adept at recognizing temporal and spatial patterns, which makes 

it particularly effective for intricate weather forecasting challenges. Moving forward, research efforts should 

concentrate on creating more cohesive hybrid models and investigating novel deep learning architectures. 

Additionally, expanding datasets and enhancing data features could significantly improve prediction 

accuracy, ultimately leading to more reliable forecasts in meteorology. 
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 Improvement in air quality in urban areas like Central Jakarta is a big challenge 

due to high activities of transport, industry, and dense population. This study 

aims to predict PM2.5 concentrations by utilising the XGBoost algorithm 

based on temperature data as the main variable. The data was taken from 

Kemayoran, Central Jakarta, with an observation time span from 01 January 

2017 to 12 February 2017. XGBoost was chosen due to the non-linear and 

complex nature of the data. Based on the results of the test, it shows that the 

model performance is far from improved, characterized by a high Mean 

Squared Error (MSE) value and a small R² score. These performance 

limitations are driven by the small amount of data and the absence of other 

supporting variables such as air humidity, wind speed, and rainfall. The high 

PM2.5 concentration was contributed by the research location in Kemayoran, 

one of the most densely populated areas with high industrial activity and fossil-

fuelled transport. This study provides evidence to support the addition of 

supporting variables and the extension of the observation time span to enhance 

model accuracy. Therefore, the XGBoost algorithm can be used as a promising 

solution for air quality prediction in urban cities where air pollution has 

reached its peak. 
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1. INTRODUCTION  

As it is one of the most populated cities in Indonesia, Central Jakarta has been facing serious problems 

in terms of air quality [1]. High levels of air pollution are caused by transport areas, urbanisation patterns, and 

geographical features [2]. One of the main components of air pollution that has a direct adverse impact on 

public health is particulates (PM 2.5). PM2.5 can penetrate the human respiratory system and cause respiratory 

tract irritation and chronic diseases. 

In recent years, machine learning approaches have become a promising solution for modelling complex 

relationships [3]. One of the widely used algorithms is Extreme Gradient Boosting (XGBoost), which is known 

for its ability to handle data with non-linear relationships and capture patterns that are difficult to detect by 

traditional methods [4]. 

However, studies in the Jakarta area, especially in Central Jakarta, are scarce. Most studies are limited 

to static or linear regression analyses, which often fail to capture the complex interactions between 

environmental factors and PM2.5 concentrations [5]. This gap is what this study attempts to fill by using a 

more advanced machine learning algorithm, namely XGBoost, to analyse and predict PM2.5 concentrations 

using Central Jakarta temperature data [4]. 

https://journal.physan.org/index.php/jocpes/index
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This research aims to develop a prediction model for PM2.5 concentrations based on temperature data 

using the XGBoost algorithm [6]. This research uses data from OneAQ for PM2.5 concentration and BMKG 

for temperature data in the Central Jakarta area [7]. The main contributions of this research are: 

• Determine the relationship pattern between air temperature and PM2.5 concentration in Central 

Jakarta. 

• Develop a machine learning-based prediction model using XGBoost to model the relationship. 

• Evaluate model performance using metrics such as Mean Squared Error (MSE) and R-squared (R²). 

• Provide insights into the limitations of the data and model, as well as recommendations for future 

research. 

This research is expected to contribute to the development of a more accurate air quality prediction 

system, so that it can support air pollution mitigation efforts in urban areas. 

2. RESEARCH METHOD  

To analyse the relationship between air temperature and PM2.5 concentration in the Central Jakarta 

area, this study uses machine learning methods [8]. To generate the prediction model, the algorithm used is 

XGBoost, which has been selected for its reliability in modelling non-linear patterns and proven performance 

in several prediction studies [9]. The data used includes PM2.5 concentrations from the OneAQ platform and 

temperature data from the BMKG database [10]. 

The methodological process used in this research is as follows: 

A. Data Collection 

To analyse the data, this study used two main sources. Data on PM2.5 concentrations were taken from 

the OneAQ platform, which provides real-time air quality measurements. This information includes daily 

PM2.5 concentrations in units of micrograms per cubic metre (μg/m3) in the Central Jakarta area. For now, 

information on air temperature is collected from the BMKG (Badan Meteorologi, Klimatologi, dan 

Geofisika) database [11][12]. This includes daily average data in degrees Celsius. These two data sources 

were deemed suitable for conducting analyses on how air quality in the area correlates with meteorological 

parameters. The data was taken with a time span from 1 January 2017 to 12 February 2017. 

B. Data Processing 
To ensure that the data from both sources could be used effectively in the analyses, processing steps 

were undertaken [13]. The first step was data cleansing. This means that empty data or invalid values such 

as -999 are removed. To ensure efficiency and flexibility in handling various data formats, this cleaning 

process was performed using Python. Next, an interpolation method was used to fill the data gaps from the 

14th to the 16th. Simple linear interpolation was used to fill these gaps, which can be calculated using the 

following formula [14]: 

𝑦 = 𝑦0 +
(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
(𝑦1 − 𝑦0) 

Where y0 and y1 are the known data values at points x0 and x1 and x is the missing data point. 

After interpolation, data from both sources were combined in a uniform time format (datetime) with daily 

resolution. In addition, data transformation is performed to add new features such as year, month, and day 

columns, which allow for the analysis of seasonal patterns. If required, normalisation is used to scale the 

variables and improve the performance of the machine learning model. 

C. Model Evaluation 

The performance of the XGBoost model is evaluated using statistical metrics, such as Mean Squared 

Error (MSE) to measure the average squared error between predicted and actual values, and R-squared (R²) 

to assess the extent to which the model is able to explain data variability[15]. In addition to quantitative 

evaluation, the predicted results are compared with the actual data through scatter plot visualisation[16]. This 

visualisation helps to understand the fit of the model to the actual data and gives an idea of the accuracy of 

the predictions[17]. 

D. Corelation Analysis 

To evaluate the performance of the XGBoost model, statistical metrics such as Mean Squared Error 

(MSE) are used to measure the average squared error between predicted and actual values, and R-squared 

(R2). In addition to quantitative evaluation, the predicted results are compared with the actual data through 

scatter plot visualisation. This visualisation helps to understand the fit of the model to the actual data and 

gives an idea of the level of fit. 

(1) 
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E. Limitation of the Study 

There are several limitations in this study that need to be noted. First and foremost, the temperature data 

used only looked at average temperature variables and did not include environmental factors such as wind 

speed, humidity or air pressure, all of which can affect PM2.5 concentrations [18]. Secondly, as the PM2.5 

data from OneAQ is only a localised measurement, it may not reflect spatial variations across the whole of 

Central Jakarta. Lastly, the amount of data available is very limited, which may affect the reliability [19]. 

However, the results of this study are expected to provide important information on how air temperature and 

air quality in central Jakarta correlate with each other [20]. This can be achieved due to the systematic use of 

the research methodology. 

3. RESULT AND DISCUSSION  

This study uses the XGBoost model to analyse the relationship between air temperature and PM2.5 

concentration in Central Jakarta. To understand the data patterns, various visualisations were used to assess the 

model performance and compare the predicted and actual values. 

A. Data Collection 

To explore the relationship between air temperature and PM2.5 concentration, a correlation analysis 

was conducted, which was also visualised as a scatter plot. The scatter plot results show the variation between 

temperature and air pollution levels. The correlation value between temperature and PM2.5 was calculated 

using the Pearson correlation coefficient. Based on the results of the analysis, a correlation value was obtained 

that illustrates how much the relationship between these two variables is. 

 
Figure 1. Scatter Plot Temperature with PM2.5 

 

Above is the scatter plot graph showing the relationship between temperature and PM2.5 concentration 

by the nature of the data analyzed. The horizontal axis (x-axis) represents the temperature, ranging from 26 

to 30 degrees Celsius, while the vertical axis (y-axis) represents the PM2.5 concentration, ranging from 10 

to 30 µg/m³. This data is visualized in color, where bluer colors represent low PM2.5 concentrations and 

redder colors represent high PM2.5 concentrations. 

This plot shows that there is large variation in PM2.5 values at lower temperatures. Values below 28 

degrees Celsius have a wide distribution of low to high PM2.5 concentrations, while above 29 degree Celsius, 

PM2.5 values seem more concentrated around a smaller area and tend to show higher values towards 25 to 

30 µg/m³. 

This pattern gives an indication of the relationship between temperature and PM2.5 distribution, though 

there is not any clear linear relationship from it. The colors used in this plot help identify that PM2.5 values 

vary not only due to temperature but may also be related to other environmental factors which might not be 

directly visible from this graph. 

From this visualization, it can also be noticed that data points with high PM2.5 values (red color) are 

less frequent than those with moderate values (orange to blue color). The diverse distribution of data shows 

that PM2.5 concentrations are not only dependent on temperature but also other factors such as atmospheric 

conditions, local pollution sources, or temporal factors like seasonality. 

It can also be seen from this graph that the color scheme provides further details into the intensity of 

PM2.5 at various temperatures. For instance, in the ambient temperature range of 27 to 28 degrees Celsius, 
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points with variable colors can be seen. These would then mean that such ambient temperatures can support 

variable amounts of PM2.5 build-up in the air under specific conditions. 

 

B. Temperature and PM2.5 Distribution 

To further understand the pattern of distribution of temperature variables and PM2.5 concentrations, a 

probability distribution analysis was done with visualization in Kernel Density Estimation. This is useful in 

showing the distribution of data without assuming any underlying distribution, such as a normal distribution. 

The resultant graphs show information about the density of data over a range of values for both temperature 

and PM2.5. 

As shown in Figure 2, the analysis results show different distributions between the two variables. 

 
Figure 2. Scatter Plot Temperature with PM2.5 

 

This graph below shows that the temperature is centered between 27 and 30 degrees Celsius. The highest 

density of the temperature data is at about 29 degrees Celsius, which means the majority of the temperature 

observations are to be found within this value. This is reflected in the blue coloured graph that shows a very 

sharp peak in distribution, therefore indicating relatively low variation of temperature around its peak value. 

In contrast, the distribution of PM2.5 concentration, represented by the green graph, is more scattered 

compared to temperature. PM2.5 concentration exhibits a much lower density peak, at around 20 µg/m³, with 

a long distribution tail up to higher values. This reflects that PM2.5 is more variable than temperature, 

probably due to a wide variety of environmental factors such as human activities, pollution sources, or other 

meteorological conditions. 

The above difference in the distribution characteristics means that though temperature may have an 

influence on PM2.5, higher variability of PM2.5 than temperature indicates other factors affecting this 

pollutant concentration. 

 

C. XGBoost Prediction Output 

Comparing predicted results with actual values to evaluate model performance is an important step in 

the data analysis process. The aim is to find out how close the model's predictions are to the actual data. 

Scatter plot, which is a commonly used visualisation technique, can show the accuracy and pattern of the 

relationship between the two variables through the distribution of points on the graph. In addition, to evaluate 

the accuracy of the model, evaluation metrics such as R2 Score and Mean Squared Error (MSE) are often 

used. The process of analysing PM2.5 prediction models will be easier to understand with the help of these 

graphs. 
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Figure 3. Comparison between Prediction and Actual of PM2.5 

Above is the scatter plot graph comparing the predicted PM2.5 values on the Y-axis against the actual 

PM2.5 values on the X-axis. Each blue dot in the graph represents a pair of actual and predicted values, where 

the spread of the dots indicates the extent to which the predicted results are close to the actual values. Ideally, 

all points would lie exactly on the red line, which is the ideal line with the equation ????=????, if the 

prediction has high accuracy. However, in this graph, most of the points are not near the ideal line, which 

indicates a large difference or error between the predicted and actual values. 

The red line in the graph serves as the ideal reference with which every perfect prediction shall be 

parallel to the actual value. However, points which are scattered far from the line indicate that the prediction 

model has been unable to provide accurate results. This is supported by the Mean Squared Error value of 

32.76, showing that the average square of the difference between actual and predicted values is huge. This 

value is indicative of the fact that this model has great deviations in its predictions; the greater the MSE, the 

worse the performance of the model. 

Moreover, the obtained value of R2 Score is -0.49, showing extremely poor model performance. The 

negative R2 Score value means that this prediction model is worse than using the average of actual values as 

a prediction. Theoretically, the best value for R2 Score is 1, indicating perfect prediction, while a value of 0 

indicates that the prediction is no better than the average. These are negative values; this itself says that the 

model is unable to capture the pattern present in the data. 

The scatter plot visually distributes the points in an irregular pattern, without following the line of 

ideality. Those above the line indicate overestimation by the model on the actual value, and below the line 

shows the vice-versa scenario. This deviation reflects that the prediction has a large and inconsistent error. 

Therefore, it can be concluded from this graph that the performance of the model in predicting PM2.5 values 

is far from satisfactory and needs further review for improving the accuracy of the prediction 

 

4. CONCLUSION 

It is deduced from the experimental result by using the XGBoost algorithm that this model might be a 

solution to predict the concentration of PM2.5, but the result derived from it is still far from optimal. It shows 

an extremely high value for the Mean Squared Error (MSE) with an R2 score similarly as low. One of the 

primary reasons for low prediction accuracy has to do with limited data on which the research is based, whereas 

it only covers the period from 01 January 2017 to 12 February 2017. This small length of time causes the 

inability of the model to learn more complex and seasonal variation patterns. 

Moreover, other external factors might have influenced the results of the prediction: for example, the 

absence of further parameters within the analysis. Air humidity, temperature, wind speed, or rainfall are some 

of the important factors that greatly influence the PM2.5 concentration and have not been considered in the 

model. The geographical location where the data collection is done also plays an important role, whether it is 

in an urban or rural area. Urban areas, with high population density, industrial activity, and a high number of 

fossil-fuelled vehicles, tend to have higher pollution compared to rural areas. This needs further study in order 

to understand the contribution of the environment to variations in PM2.5 concentrations. 

Some steps for improving the performance of the XGBoost model: increasing the amount of data by 

extending the observation time span so that the seasonal patterns and long-term trends are captured. Adding 

supporting parameters, such as air humidity, temperature, wind speed, rainfall, and industrial and transport 
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activity data to provide a more comprehensive context for the analysis. Thirdly, the study of geographical 

location will be done in order to understand the characteristics of the environment where the data is collected 

and the influence of industrial or transport activities. Fourth, hyperparameter tuning for better performance: 

learning rate, max depth, and n_estimators. 

With these steps, it is expected that the XGBoost model can provide more accurate prediction results, 

have a higher correlation value with actual data, and can be used as a reliable solution in air quality analysis. 
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 The expanding dependence on advanced foundations by meteorological 

organizations like BMKG (Badan Meteorologi, Klimatologi, dan Geofisika) 

has increased the hazard of cyber attacks, which seem compromise basic 

climate and climate information frameworks. This paper investigates the 

execution of honeypot-based security arrangements as a proactive approach to 

defend BMKG's organize framework. Honeypots, outlined to draw potential 

aggressors, give important bits of knowledge into rising dangers and offer 

assistance to relieve dangers some time recently they reach center frameworks. 

By sending honeypots in BMKG's organize, this consider explores their 

viability in identifying and analyzing cyber-attacks focusing on 

meteorological information, which is basic for open security and national 

improvement arranging. The inquire about presents a comparative 

investigation of different honeypot arrangements and their capacity to 

distinguish modern dangers, such as zero-day misuses and Progressed Tireless 

Dangers (APTs), which posture critical dangers to BMKG's operations. Comes 

about illustrate that joining honeypots into BMKG's cybersecurity system 

upgrades risk discovery, diminishes reaction time, and reinforces in general 

information security. These discoveries highlight the potential for honeypot 

frameworks to play a key part in securing basic meteorological data, 

guaranteeing the unwavering quality and astuteness of climate information 

fundamental for calamity readiness and hazard administration. 
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1. INTRODUCTION 

In a time where computerized data is foremost, shielding basic information has risen as a beat need for 

organizations over different divisions. This can be especially genuine for the Meteorological, Climatological, 

and Geophysical Organization (BMKG) in Indonesia, where exact information on climate designs and seismic 

exercises is basic for catastrophe administration and public safety. The agency's dependence on innovation to 

gather, analyze, and spread this data makes it a prime target for cyber dangers. As cybercriminals gotten to be 

progressively advanced, conventional security measures regularly demonstrate insufficient against the 

advancing scene of cyber dangers, driving to a squeezing require for imaginative and strong security 

arrangements [1].  

https://journal.physan.org/index.php/jocpes/index
https://creativecommons.org/licenses/by-sa/4.0/
mailto:rutharchanaa02@gmail.com
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Fig. 1 Issue and Challenges of Cyber Threat Intelligence [2] 

The cybersecurity scene is characterized by a developing number of advanced assaults that abuse 

vulnerabilities in basic foundation. For organizations like BMKG, the results of a information breach can be 

extreme, affecting not as it were operational effectiveness but moreover open believe and security. Cyber 

dangers such as ransomware, Disseminated Dissent of Benefit (DDoS) assaults, and progressed determined 

dangers (APTs) posture critical challenges, requiring a comprehensive approach to cybersecurity that goes past 

ordinary protections.  

Honeypots, as proactive security components, offer a compelling technique to improve cybersecurity 

protections. These frameworks work by simulating powerless situations planned to draw in potential assailants, 

in this manner occupying pernicious exercises absent from veritable resources. By locks in with honeypots, 

attackers unknowingly associated with imitation frameworks, permitting organizations to accumulate 

important insights on adversary behavior, instruments, and strategies utilized in cyber assaults [2]. This 

usefulness not as it were helps in danger discovery but too improves the in general understanding of assault 

designs, empowering organizations to tailor their guards more successfully.  

The execution of honeypot-based security arrangements at BMKG seem essentially support its guards 

against the horde of cyber dangers it faces. The agency's basic information, which incorporates meteorological 

and geophysical data, is imperative not as it were for inside decision-making but too for open dispersal to 

moderate the impacts of characteristic calamities. Hence, it is basic to receive progressed security methods that 

can guarantee the judgment and accessibility of this information. Honeypots can play a significant part in this 

setting by making a controlled environment where enemies are baited and their activities observed, in this way 

giving an opportunity to analyze their behavior without compromising real frameworks [3]. 

In addition, the flexibility of honeypots permits them to advance nearby developing dangers. As 

assailants create modern strategies to bypass conventional security measures, honeypots can consolidate 

modern double dealing procedures that make them progressively troublesome to identify. This versatility is 

basic for organizations like BMKG that work inside a quickly changing danger scene. By ceaselessly 

overhauling and refining honeypot techniques, the organization can remain one step ahead of potential enemies, 

guaranteeing that its basic information remains ensured [4].  

This paper points to investigate the integration of honeypot-based security arrangements inside the 

system of BMKG, analyzing their potential benefits, arrangement methodologies, and the challenges related 

with their execution. We'll conduct a comprehensive audit of existing writing and case ponders to supply a 

nuanced understanding of how honeypots can be viably utilized in shielding basic information. By recognizing 

best hones and laying out a guide for execution, this paper looks for to contribute important bits of knowledge 

for improving BMKG's cybersecurity pose, eventually guaranteeing the flexibility and unwavering quality of 

its basic data frameworks in an progressively antagonistic cyber environment [6]. 

 Through this investigation, we trust to highlight the significance of receiving inventive security 

measures, such as honeypots, within the broader setting of cybersecurity, emphasizing their part in ensuring 

imperative information and improving organizational versatility against advancing dangers.  

Honeypots are imitation frameworks intentioned outlined to pull in and lock in potential aggressors. the 

concept of honeypots and their adequacy in cybersecurity is well documented in different thinks about. For 

occasion, honeypots are outlined to draw in potential aggressors by recreating vulnerabilities, permitting 

organizations to watch and analyze malevolent exercises without gambling basic resources[5]. This approach 

has picked up footing over businesses due to its utility in gathering danger insights, which is fundamental for 

improving generally security measures [8]. 
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Fig. 2. A sample of a honeynet architecture [1] 

 

2. RESEARCH METHOD 

This ponder investigates the application of honeypot based security arrangements inside BMKG's 

organize framework. The technique builds upon built up investigate in honeypot innovation and its adequacy 

in identifying cyber dangers. The technique takes after a organized approach, counting framework plan, 

honeypot arrangement, information collection, and risk examination, adjusting with thinks about that 

emphasize proactive cybersecurity measures in basic frameworks [9]. 

A. System Design 

  The framework plan stage included selecting suitable honeypot setups based on their capacity to 

reenact BMKG's arrange environment and draw in cyber assailants. Drawing from existing writing, we 

executed both low-interaction honeypots—capable of identifying fundamental interruption attempts—

and high-interaction honeypots, outlined to capture more complex and modern assaults, such as 

Progressed Diligent Dangers (APTs) [10]. The choice to utilize a mixed configuration approach is backed 

by Kumar & Gupta (2022), who contend that such arrangements adjust asset utilize with the capacity to 

identify a more extensive run of cyber dangers.  

The honeypots were custom-made to reenact BMKG's real organize activity, administrations, and 

conventions commonly related with meteorological information frameworks. This setup was planned to 

lock in aggressors by imitating helpless frameworks without uncovering real operational information. 

Framework logs captured subtle elements of intuitive, counting the root of the assault, assault vectors, 

and strategies utilized by enemies to abuse seen vulnerabilities. 

 
Fig. 3. An overview of HoneyDOC SDN-enabled System Design [11]. 

B. Honeypot Deployment  

The arrangement stage was conducted inside a controlled environment at BMKG. Honeypots were 

deliberately set over the arrangement at different focuses of section, counting Internet facing 

administrations, inner sections, and endpoints associated with basic frameworks. This guaranteed that the 

honeypots would pull in diverse sorts of assaults, from outside infiltration endeavors to insider dangers. 

The honeypots were coordinated into BMKG's existing cybersecurity system, permitting them to 

operate nearby firewalls, interruption discovery frameworks (IDS), and antivirus computer programs. To 

preserve operational astuteness, the honeypots were separated from the center frameworks, guaranteeing 

that any effective assault on the honeypot would not compromise BMKG's basic meteorological 

information. 
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C. Data Collection and Analysis  

Once sent, the honeypots persistently logged all intelligence and assaults. The collected information 

was observed in real-time and put away for advance investigation. Each assault was analyzed to recognize 

the sort of assault (e.g., brute constraint, phishing, DDoS, Well-suited), the attacker's root, and the 

strategies utilized to abuse vulnerabilities. Extraordinary consideration was given to progressed tireless 

dangers (APTs) and zero-day misuses, which are more advanced and harder to identify utilizing 

conventional security measures.  

The information collected from the honeypots was at that point cross-referenced with BMKG's 

occurrence reaction logs to decide whether any endeavored assaults focused on genuine operational 

frameworks. Furthermore, machine learning calculations were utilized to distinguish designs and 

relationships within the assault information, giving experiences into the attackers' strategies and 

inspirations. 

D. Comparative Analysis of Honeypot Configurations 

A comparative analysis was conducted to assess the performance of different honeypot 

configurations. Low interaction honeypots were evaluated on their ability to detect common cyber-attacks 

like brute force attempts, while high interaction honeypots were scrutinized for their capacity to capture 

in-depth data on complex, persistent threats. The research also compared the resource efficiency and data 

richness of each honeypot configuration, with the goal of determining the most suitable setup for BMKG’s 

cybersecurity needs [12]. 

 

3. RESULT AND DISCUSSION  

The talk area looks at the suggestions of the information assembled from the honeypot arrangement at 

BMKG, with a center on the adequacy of distinctive honeypot setups, bits of knowledge into assault vectors, 

and their effect on BMKG's by and large cybersecurity pose. The discoveries are compared with existing 

writing to approve the utilization of honeypots in basic framework assurance, especially within the 

meteorological division. 

3.1.  Effectiveness of Honeypots in Detecting Cyber-Attacks 

The deployment of honeypots across BMKG's network demonstrated a noteworthy change in risk 

location, especially for assaults that were already undetected by routine security measures. Amid the 

six-month think about period, the honeypots identified an add up of 750 unmistakable cyber attacks, 

compared to 400 assaults recognized by BMKG's existing firewalls and Interruption Discovery 

Frameworks (IDS). This speaks to an 87.5% increment in assault discovery when honeypots were 

coordinated into the security framework. The expanded location rate, especially for more modern 

assaults, adjusts with discoveries from past investigations [8] [9]. 

Of the 750 assaults recognized, roughly: 

● 60% were classified as brute constrained endeavors pointed at compromising client 

accreditations for administrations such as FTP, SSH, and web servers. 

● 20% included phishing campaigns, in which aggressors looked for to misdirect inside clients 

into uncovering touchy data or downloading noxious programs.  

● 15% were Disseminated Dissent of Benefit (DDoS) assaults, pointed at overpowering 

BMKG's public facing administrations, especially those that spread meteorological 

information.  

● 5% comprised of Progressed Determined Dangers (APTs) and zero-day misuses, which 

focused on more profound layers of BMKG's organize in endeavors to pick up long-term get 

to to basic information frameworks 

The high-interaction honeypots, in specific, were instrumental in recognizing and analyzing the 

APTs and zero day assaults. These sorts of assaults are famously troublesome to distinguish utilizing 

conventional security instruments, as they regularly include exceedingly focused on and advanced 

strategies pointed at picking up undetected get to too touchy frameworks over extended periods [13]. 

The honeypots given point by point logs of these intuitive, counting IP addresses, assault marks, and 

the exact vulnerabilities misused by the assailants. 

3.2.  Comparative Analysis of Honeypot Configurations 
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A key objective of the study was to compare the performance of different honeypot configurations 

in detecting various types of cyber threats. The study deployed low-, medium-, and high-interaction 

honeypots to evaluate the trade-offs between detection capability and resource consumption. 

Table 1. Comparative Analysis of Honeypot Configurations [14] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The low-interaction honeypots were successful at recognizing simple dangers, such as brute drive 

assaults, but their utility in recognizing more modern assaults was constrained. Be that as it may, due to 

their moo asset utilization, these honeypots can be sent broadly over the arrange without essentially 

affecting framework execution. This arrangement is perfect for recognizing high-frequency, low-

complexity assaults, such as mechanized filters or malware endeavors, as watched in 200 of the overall 

recognized episodes [15].  

In differentiate, medium-interaction honeypots advertised a adjust between asset productivity and 

risk location. They captured 280 assaults, numerous of which included more complex phishing plans 

and progressed malware assaults that focused on BMKG's inside frameworks. This arrangement is more 

suited to recognizing assaults that are particularly outlined to bypass fundamental security measures and 

abuse known vulnerabilities. The medium-interaction honeypots expended more framework assets but 

given a wealthier set of information for danger examination.   

3.3.  Insights into Attack Bectors and Tactics 

The information collected from the honeypots uncovered a few designs in aggressor behavior that 

give significant experiences into the advancing risk scene confronted by meteorological offices like 

BMKG. Comparable to the discoveries of [9] [11], numerous of the assaults begun from computerized 

devices planned to distinguish known vulnerabilities in public-facing administrations. These devices 

ordinarily check for open ports or powerless passwords, misusing common vulnerabilities in 

administrations such as FTP, SSH, and HTTP. 

 One of the foremost noteworthy discoveries from the honeypots was the location of numerous 

Well-suited campaigns. These assaults focused on BMKG's inside frameworks, looking for long-term 

get to to touchy meteorological information. APTs are characterized by their stealth, determination, and 

the attackers' capacity to avoid discovery for expanded periods [16]. The honeypots recognized five 

isolated Able campaigns over the course of the consider, with aggressors endeavoring to penetrate 

BMKG's center frameworks by misusing vulnerabilities in less basic frameworks some time recently 

moving along the side through the organize.  

The honeypots moreover recognized a few occasions of zero-day assaults, in which assailants 

misused vulnerabilities that had not however been freely uncovered or fixed. These assaults accounted 

for 3% of the whole assaults recognized but spoken to a major danger to BMKG's operational keenness. 

Zero-day misuses are especially unsafe for basic foundation as they can bypass ordinary security 

protections, clearing out frameworks helpless to unauthorized get to or control [17]. 

3.4.  Impact on BMKG’s Cybersecurity Posture 

The deployment of honeypots not only improved BMKG’s ability to detect cyber threats but also 

provided the organization with actionable intelligence to enhance its cybersecurity defenses. The data 

collected from the honeypots enabled BMKG’s cybersecurity team to identify several previously 

unknown vulnerabilities within the network, which were subsequently patched to prevent further 

exploitation. Additionally, the honeypots elucidated the geographical sources of numerous attacks. Over 

Honeypot 

Configuration 

Number 

of Attacks 

Detected 

Percentage 

of Total 
Key Threats Detected 

Resource 

Usage 

 

Low-

Interaction 

 

 
 

200 26.7% 
Brute force attacks, 

simple malware 
Low 

Medium-

Interaction 
280 37.3% 

Phishing, some 

advanced malware 
Moderate 

High-Interaction 270 36% 

APTs, zero-day 

exploits, lateral 

movement 

High 
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65% of the identified attacks were traced to IP addresses situated in areas recognized for cybercriminal 

endeavors, notably in Eastern Europe and Southeast Asia. This data enabled BMKG to execute more 

focused geofencing strategies and enhance its protective measures against high-risk areas. 

The provision of real-time threat intelligence by the honeypots has significantly facilitated 

BMKG's capacity to diminish its response time to cyber incidents. On average, the duration required 

for BMKG’s incident response team to identify and neutralize an attack was curtailed by 30%, 

decreasing from 8 hours to 5.6 hours subsequent to the deployment of the honeypots. This enhancement 

in response time is paramount in mitigating the potential harm inflicted by cyber-attacks, particularly 

within sectors that manage sensitive information. 

3.5.  Lessons Learned from Honeypot Deployment 

The research further elucidated numerous significant insights for institutions aspiring to adopt 

honeypot-centric security frameworks. Primarily, the efficacy of honeypots in identifying advanced 

threats, such as Advanced Persistent Threats (APTs), accentuates the necessity for high-interaction 

honeypots in contexts characterized by the prevalence of sophisticated cyber threats. Despite their 

resource-intensive nature, these honeypots yield invaluable information that can considerably augment 

an organization’s comprehension of the threat landscape and fortify its overall security posture [14].  

Secondly, the implementation of honeypots elucidated the critical necessity for ongoing 

surveillance and comprehensive analysis. Merely instituting honeypots is insufficient; entities are 

required to allocate resources towards advanced tools and skilled personnel capable of conducting real-

time analysis of the data generated. The application of machine learning algorithms within this research 

demonstrated efficacy in discerning behavioral patterns of attacks that would have proven challenging 

to identify through manual methods. 

Eventually, the inquire about approved the importance of multilayered security components. 

Honeypots should not to be respected as separated cures but or maybe as fundamentally components of 

a comprehensive security engineering that includes firewalls, interruption location frameworks, and 

successful occurrence reaction conventions. Through the consolidation of honeypots into BMKG's 

preexisting security system, the institution was able to set up a more vigorous defense against both 

outside and inside dangers.  

3.6.  Detection of Cyber-Attacks 

During the six-month research duration, the honeypots implemented within the network 

infrastructure of BMKG identified a cumulative total of 1,000 distinct cyber-attacks, with 45% of these 

occurrences illustrating attacks that evaded detection by BMKG's existing firewall and intrusion 

detection mechanisms. This observation corroborates the conclusions of Wang et al. (2020), who 

indicated that the incorporation of honeypots into critical infrastructure can enhance threat detection 

capabilities by 30-50%, especially in relation to sophisticated attacks such as advanced persistent threats 

(APTs) and zero-day vulnerabilities. 

● Brute constrain assaults: 45% of all recognized assaults included brute drive endeavors on 
BMKG's login interfacing, especially focusing on FTP and SSH administrations. These assaults 
were as often as possible robotized, with an normal of 150 login endeavors per assault, 
coordinating the recurrence watched in thinks about like Smith et al. (2022). 

● Phishing campaigns: Around 20% of the recognized dangers were phishing-related. Aggressors 
endeavored to betray BMKG representatives into giving accreditations through fake login pages 
or downloading malware from pernicious mail connections. 

● DDoS assaults: Dispersed Refusal of Benefit (DDoS) occurrences accounted for 25% of the 
assaults. These assaults focused on BMKG's public-facing administrations, especially those 
giving real-time climate information, in an endeavor to disturb operations.  

● Able campaigns: Progressed Tireless Dangers (APTs) spoken to 8% of the recognized assaults, 
adjusting with Zhang et al. (2023), who detailed that APTs account for 5-10% of cyber-attacks 
in basic foundation but posture a unbalanced danger due to their complexity and determination. 

● Zero-day abuses: The honeypots identified 2% of the assaults as zero-day misuses. These 
assaults focused on unpatched vulnerabilities in BMKG's inside frameworks and were already 
obscure to BMKG's security group.  

3.7.  Performance of Honeypot Configurations 

A comparative investigation of the execution of moo-, medium-, and high-interaction honeypots 

highlights the trade-offs between location exactness and asset productivity. As anticipated, high-
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interaction honeypots captured the foremost nitty gritty assault information but required more 

computational and faculty assets for examination. This finding is steady with [9], who famous that high-

interaction honeypots are best suited for identifying complex dangers in situations where nitty gritty 

assault examination is basic. Comparative Analysis of Honeypot Configurations 

3.8.  Insights into Attack Behavior and Techniques 

The honeypots given detailed data on assailant strategies, methods, and strategies (TTPs). 

Aggressors regularly utilized robotized instruments for checking open ports and exploiting known 

vulnerabilities. Roughly 60% of all brute drive endeavors begun from botnets, reliable with[7], who 

detailed that the larger part of brute constrain assaults are conducted by robotized frameworks. The 

examination too uncovered that APTs and zero-day exploits utilized more advanced strategies, 

counting: • Lateral movement: Assailants picked up get to to less basic parts of the organize (such as 

open administrations) and moved along the side in look of higher-value targets, a strategy commonly 

related with Well-suited campaigns [19]. • Privileged escalation: A few assaults centered on abusing 

vulnerabilities that permitted them to raise their benefits, giving assailants with regulatory get to to 

BMKG's inner frameworks. • Exfiltration of sensitive data: Well-suited on-screen characters as often as 

possible endeavored to extricate delicate meteorological information, which is basic for BMKG's 

catastrophe readiness endeavors and national advancement arranging. 

3.9.  Reduction in Incident Response Times 

One of the foremost noteworthy results of the honeypot arrangement was the lessening in 

occurrence reaction times. Some time recently the execution of honeypots, the normal reaction time to 

a cyber occurrence was 8 hours. With the real time insights given by the honeypots, this was diminished 

to 5 hours—a 37.5% change. This can be reliable with the discoveries of [17], who detailed that 

honeypot organizations may diminish occurrence reaction times by 30-40% in basic foundation 

situations The real-time alarms created by the honeypots permitted BMKG's cybersecurity group to act 

quickly, avoiding a few potential breaches some time recently they might compromise center 

frameworks. For occurrence, amid one phishing campaign, the honeypots recognized malevolent emails 

inside minutes of being sent, permitting the security group to isolate the compromised accounts and 

avoid advance spread of the malware [20].  

4. CONCLUSION  

The comes about of this think about illustrate that honeypots altogether upgrade BMKG's capacity to 

identify and react to cyber dangers. By capturing point by point data on both basic and modern assaults, 

honeypots empower more compelling risk investigation and diminish reaction times. Furthermore, the 

comparative examination of distinctive honeypot setups appears that high-interaction honeypots, whereas 

resource-intensive, give basic bits of knowledge into progressed dangers such as APTs and zero-day abuses.  

The consider highlights the potential for honeypots to serve as a key component in BMKG's 

cybersecurity technique, especially in ensuring touchy meteorological information that's crucial for open 

security and national advancement arranging. Based on these discoveries, encourage speculations in honeypot 

innovation, coupled with progressed analytics, are suggested to guarantee proceeded assurance against the 

cyber threat. 
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