Literature Review: Development of a Machine Learning-Based Early Warning System for Land and Forest Fires with IoT and Automated Action Recommendations
Main Article Content
Abstract
Lightning strikes pose significant threats to human safety and infrastructure, particularly in tropical regions like Indonesia with high lightning activity. This study aims to develop a predictive model of lightning strike risk to humans based on spatial analysis and environmental factors, utilizing data on lightning distribution, land use, population density, and meteorological parameters. Using probabilistic decision trees and tropical lightning formulas, the model identifies key predictors, including rainfall, land use patterns, and humidity, which influence lightning density. The results reveal that densely populated areas with high lightning activity, such as parts of Java and Sumatra, are particularly vulnerable. Spatial risk maps generated from the model highlight high-risk zones, providing critical insights for disaster mitigation planning and infrastructure protection. Furthermore, the study emphasizes the significant correlation between lightning density, land use, and population exposure, offering a comprehensive framework for understanding lightning risks. This predictive model not only serves as a tool for early warning systems and sustainable spatial planning but also underscores the importance of integrating environmental and spatial data for effective lightning risk mitigation. Future research should incorporate temporal lightning variations and field validation to refine the model and enhance its applicability.
Downloads
References
L. Kiely et al., “Assessing costs of Indonesian fires and the benefits of restoring peatland,” Nat. Commun., vol. 12, no. 1, pp. 1–11, 2021, doi: 10.1038/s41467-021-27353-x.
L. Zhang, M. Xu, H. Chen, Y. Li, and S. Chen, “Globalization, Green Economy and Environmental Challenges: State of the Art Review for Practical Implications,” Front. Environ. Sci., vol. 10, no. March, pp. 1–9, 2022, doi: 10.3389/fenvs.2022.870271.
Data Terbaru Mengonfirmasi: Kebakaran Hutan Semakin Memburuk," WRI Indonesia, Oct. 2023. [Online]. Available: https://wri-indonesia.org/id/wawasan/data-terbaru-mengonfirmasi-kebakaran-hutan-semakin-memburuk.
F. Carta, C. Zidda, M. Putzu, D. Loru, M. Anedda, and D. Giusto, “Advancements in Forest Fire Prevention: A Comprehensive Survey,” Sensors, vol. 23, no. 14, 2023, doi: 10.3390/s23146635.
R. Alkhatib, W. Sahwan, A. Alkhatieb, and B. Schütt, “A Brief Review of Machine Learning Algorithms in Forest Fires Science,” Appl. Sci., vol. 13, no. 14, 2023, doi: 10.3390/app13148275.
A. M. Elshewey and A. A. Elsonbaty, “Forest Fires Detection Using Machine Learning Techniques,” Int. J. Res. Eng. Sci. ISSN, vol. 10, no. Ix, pp. 271–275, 2022.
J. R. Asor, J. L. Lerios, S. B. Sapin, J. O. Padallan, and C. A. C. Buama, “Fire incidents visualization and pattern recognition using machine learning algorithms,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 3, pp. 1427–1435, 2021, doi: 10.11591/ijeecs.v22.i3.pp1427-1435.
M. Grari et al., “Using Iot and Ml for Forest Fire Detection, Monitoring, and Prediction: a Literature Review,” J. Theor. Appl. Inf. Technol., vol. 100, no. 19, pp. 5445–5461, 2022.
J. Ananthi, N. Sengottaiyan, S. Anbukaruppusamy, K. Upreti, and A. K. Dubey, “Forest fire prediction using IoT and deep learning,” Int. J. Adv. Technol. Eng. Explor., vol. 9, no. 87, pp. 246–256, 2022, doi: 10.19101/IJATEE.2021.87464.
H. Snyder, “Literature review as a research methodology: An overview and guidelines,” J. Bus. Res., vol. 104, no. August, pp. 333–339, 2019, doi: 10.1016/j.jbusres.2019.07.039.
S. Deepthi, S. G. Krishna, K. B. Sahana, H. R. Vandana, and M. Latha, “IOT Enabled Forest Fire Detection and Management,” Int. J. Eng. Res. Technol., vol. 8, no. 11, pp. 196–199, 2020.
Y. Apriani, W. A. Oktaviani, and I. M. Sofian, “Design and Implementation of LoRa-Based Forest Fire Monitoring System,” J. Robot. Control, vol. 3, no. 3, pp. 236–243, 2022, doi: 10.18196/jrc.v3i3.14128.
J. Qian et al., “A High-Precision Ensemble Model for Forest Fire Detection in Large and Small Targets,” Forests, vol. 14, no. 10, 2023, doi: 10.3390/f14102089.
R. Singh, A. Gehlot, S. Vaseem Akram, A. Kumar Thakur, D. Buddhi, and P. Kumar Das, “Forest 4.0: Digitalization of forest using the Internet of Things (IoT),” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 5587–5601, 2022, doi: 10.1016/j.jksuci.2021.02.009.
Evizal Abdul Kadir, A. Alomainy, H. Daud, W. Maharan, N. Muhammad, and N. Syafitri, “Multi Sensor Network System for Early Detection and Prediction of Forest Fires in Southeast Asia,” vol. 16, no. 1, pp. 1–23, 2022.
R. K. Mohammed, “A real-time forest fire and smoke detection system using deep learning,” Int. J. Nonlinear Anal. Appl, vol. 13, no. November 2021, pp. 2008–6822, 2022, [Online]. Available: http://dx.
A. B. Abdusalomov, B. M. S. Islam, R. Nasimov, M. Mukhiddinov, and T. K. Whangbo, “An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031512.
D. A. Sungheetha and D. R. Sharma R, “Real Time Monitoring and Fire Detection using Internet of Things and Cloud based Drones,” J. Soft Comput. Paradig., vol. 2, no. 3, pp. 168–174, 2020, doi: 10.36548/jscp.2020.3.004.
M. Krishnamoorthy, M. Asif, P. P. Kumar, R. S. S. Nuvvula, B. Khan, and I. Colak, “A Design and Development of the Smart Forest Alert Monitoring System Using IoT,” J. Sensors, vol. 2023, 2023, doi: 10.1155/2023/8063524.
T. Niriksha, J. Sarma, R. Nayak, S. Dewangan, and A. Mishra, “INTEGRATED SYSTEM OF WIRELESS SENSOR NETWORKS AND MACHINE LEARNING FOR EARLY FOREST FIRE DETECTION AND,” vol. 9, no. 5, pp. 527–534, 2024.
W. Benzekri, A. El Moussati, O. Moussaoui, and M. Berrajaa, “Early forest fire detection system using wireless sensor network and deep learning,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 496–503, 2020, doi: 10.14569/IJACSA.2020.0110564.
M. N. A. Ramadan et al., “Towards early forest fire detection and prevention using AI-powered drones and the IoT,” Internet of Things (Netherlands), vol. 27, no. February, p. 101248, 2024, doi: 10.1016/j.iot.2024.101248.
N. D. P. Rao, Y. Chennaiah, P. S. Kavya, M. V. Kumar, and S. S. venkata yatish chandra, “IoT-Enhanced Early Warning System for Forest Fire Detection,” Int. J. Innov. Res. Eng. Manag., vol. 9, no. 3, pp. 195–198, 2022, doi: 10.55524/ijirem.2022.9.3.32.
R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, “A forest fire detection system based on ensemble learning,” Forests, vol. 12, no. 2, pp. 1–17, 2021, doi: 10.3390/f12020217.
N. C. Gaitan and P. Hojbota, “Forest fire detection system using lora technology,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 18–21, 2020, doi: 10.14569/IJACSA.2020.0110503.
B. T. Pham et al., “Performance evaluation of machine learning methods for forest fire modeling and prediction,” Symmetry (Basel)., vol. 12, no. 6, pp. 1–21, 2020, doi: 10.3390/SYM12061022.
A. Muhammad et al., “Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review,” J. Robot. Autom., vol. 5, no. 1, pp. 212–226, 2021, doi: 10.36959/673/372.
M. Trinath Basu, R. Karthik, J. Mahitha, and V. Lokesh Reddy, “IoT based forest fire detection system,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 124–126, 2018, doi: 10.14419/ijet.v7i2.7.10277.
A. Sharma, B. S. Sohi, and S. Chandra, “SN based forest fire detection and early warning system,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 209–214, 2019, doi: 10.35940/ijitee.h6733.078919.
C. Hernández-Goya, P. Caballero-Gil, I. Santos-González, and J. Toledo-Castro, “Management of Forest Fires Using IoT Devices,” Elev. Int. Conf. Mob. Ubiquitous Comput. Syst. Serv. Technol. UBICOMM 2017, no. c, pp. 121–126, 2017.