Prediction of Aquaculture Quality Using Long Short-Term Memory in the Sunda Strait Region

Main Article Content

John Pieter Sirfefa Aes

Abstract

Aquaculture plays a vital role in addressing global seafood demands and ensuring food security, particularly in tropical regions like the Sunda Strait, Indonesia. However, aquaculture success depends on key environmental parameters, including sea surface temperature (SST), salinity, ocean heat content, and thermocline depth, which exhibit complex spatiotemporal variability. This study applies a Long Short-Term Memory (LSTM) model to predict aquaculture suitability by analyzing five critical oceanographic parameters: depth of the 26°C isotherm (so26chgt), ocean heat content (sohtc300), mixed layer depth (somxl010), sea surface salinity (sosaline), and sea surface temperature (sosstsst). Using the ORAS5 dataset spanning January 2015 to March 2025, the model achieved high accuracy, with R² scores exceeding 0.89 for all parameters. Spatial prediction maps for November 2024 to March 2025 were generated, highlighting regions with optimal environmental conditions for aquaculture. Results indicate that SST and salinity are the most influential factors affecting aquaculture quality, with favorable conditions predominantly observed from December to May. The findings underscore the potential of deep learning models in supporting sustainable aquaculture management through accurate environmental forecasting.

Downloads

Download data is not yet available.

References

S. S. Mukonza and J. L. Chiang, “Meta-Analysis of Satellite Observations for United Nations Sustainable Development Goals: Exploring the Potential of Machine Learning for Water Quality Monitoring,” Oct. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/environments10100170.

M. Mugwanya, M. A. O. Dawood, F. Kimera, and H. Sewilam, “Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review,” Aquac Fish, vol. 7, no. 3, pp. 223–243, May 2022, doi: 10.1016/j.aaf.2021.12.005.

J. Snyder, E. Boss, R. Weatherbee, A. C. Thomas, D. Brady, and C. Newell, “Oyster aquaculture site selection using landsat 8-derived sea surface temperature, turbidity, and chlorophyll a,” Front Mar Sci, vol. 4, no. JUN, Jun. 2017, doi: 10.3389/FMARS.2017.00190/FULL.

E. Valentini, F. Filipponi, A. N. Xuan, F. M. Passarelli, and A. Taramelli, “Earth observation for maritime spatial planning: Measuring, observing and modeling marine environment to assess potential aquaculture sites,” Sustainability (Switzerland), vol. 8, no. 6, May 2016, doi: 10.3390/su8060519.

Y. S. Androulidakis and Y. N. Krestenitis, “Sea Surface Temperature Variability and Marine Heat Waves over the Aegean, Ionian, and Cretan Seas from 2008–2021,” J Mar Sci Eng, vol. 10, no. 1, Jan. 2022, doi: 10.3390/jmse10010042.

N. Ahmed, S. Thompson, and M. Glaser, “Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability,” Environ Manage, vol. 63, no. 2, pp. 159–172, Feb. 2019, doi: 10.1007/S00267-018-1117-3.

M. Des, M. Gómez-Gesteira, M. deCastro, L. Gómez-Gesteira, and M. C. Sousa, “How can ocean warming at the NW Iberian Peninsula affect mussel aquaculture?,” Science of the Total Environment, vol. 709, Mar. 2020, doi: 10.1016/j.scitotenv.2019.136117

C. W. Hines, Y. Fang, V. K. S. Chan, K. T. Stiller, C. J. Brauner, and J. G. Richards, “The effect of salinity and photoperiod on thermal tolerance of Atlantic and coho salmon reared from smolt to adult in recirculating aquaculture systems,” Comp Biochem Physiol A Mol Integr Physiol, vol. 230, pp. 1–6, Apr. 2019, doi: 10.1016/j.cbpa.2018.12.008.

G. Claireaux and J. P. Lagardère, “Influence of temperature, oxygen and salinity on the metabolism of the European sea bass,” J Sea Res, vol. 42, no. 2, pp. 157–168, Sep. 1999, doi: 10.1016/S1385-1101(99)00019-2.

M. Martinez, M. C. Mangano, G. Maricchiolo, L. Genovese, A. Mazzola, and G. Sarà, “Measuring the effects of temperature rise on Mediterranean shellfish aquaculture,” Ecol Indic, vol. 88, pp. 71–78, May 2018, doi: 10.1016/j.ecolind.2018.01.002.

F. D. do Prado et al., “Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus),” Evol Appl, vol. 11, no. 8, pp. 1322–1341, Sep. 2018, doi: 10.1111/EVA.12628.

N. A. Lagos et al., “Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: Implications for scallop aquaculture in an upwelling-influenced area,” Aquac Environ Interact, vol. 8, pp. 357–370, 2016, doi: 10.3354/AEI00183.

M. S. Barbosa-Silva, H. D. S. Borburema, F. de O. Fernandes, M. F. de Nóbrega, and E. Marinho-Soriano, “Projecting environmental suitability areas for the seaweed Gracilaria birdiae (Rhodophyta) in Brazil: Implications for the aquaculture pertaining to five environmentally crucial parameters,” J Appl Phycol, vol. 35, no. 2, pp. 773–784, Apr. 2023, doi: 10.1007/S10811-023-02920-5.

Z. WANG, J. ZHAO, Y. ZHANG, and Y. CAO, “Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea,” Journal of Environmental Sciences, vol. 21, no. 9, pp. 1268–1275, 2009, doi: 10.1016/S1001-0742(08)62414-6.

D. H. Klinger, S. A. Levin, and J. R. Watson, “The growth of finfish in global openocean aquaculture under climate change,” Proceedings of the Royal Society B: Biological Sciences, vol. 284, no. 1864, Oct. 2017, doi: 10.1098/RSPB.2017.0834.

R. Filgueira, T. Guyondet, L. A. Comeau, and R. Tremblay, “Bivalve aquaculture-environment interactions in the context of climate change,” Glob Chang Biol, vol. 22, no. 12, pp. 3901–3913, Dec. 2016, doi: 10.1111/GCB.13346.

GFCM - CGPM, “Climate change implications for fisheries and aquaculture: Overview of current scientific knowledge.,” 2009.

M. Mugwanya, M. A. O. Dawood, F. Kimera, and H. Sewilam, “Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review,” Aquac Fish, vol. 7, no. 3, pp. 223–243, May 2022, doi: 10.1016/J.AAF.2021.12.005.

M. Rizqy Nugraha et al., “Radiosonde System Using ESP32 and LoRa Ra-02 Web-Based for Upper-Air Profile Observation,” 2024 International Conference on Information Technology and Computing (ICITCOM), pp. 213–217, Aug. 2024, doi: 10.1109/ICITCOM62788.2024.10762300.

M. I. Hutapea, Y. Y. Pratiwi, I. M. Sarkis, I. K. Jaya, and M. Sinambela, “Prediction of relative humidity based on long short-term memory network,” AIP Conf Proc, vol. 2221, Mar. 2020, doi: 10.1063/5.0003171.

Similar Articles

You may also start an advanced similarity search for this article.